AFOSR.TR. 8§8-0019 @
H“C rick COBY T

= DIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF
g:)’ GALLIUM ARSENIDE

¢ SYSTEM REFERENCE MANUAL
== Valid for Czochralski Growth Controller Software Version 2.4
o 92 Arizona State University
; < Semiconductor Materials Research Laboratory
i‘ I College of Engineering & Applied Sciences
S § FEPEIJE2
3 January 4, 1988 8135, 33
- ’ F5E3 &R
9 . R . vl = S 30 (@]
- Scientific Report, April 1, 1987 - December 31, 1987 % -z g 8.9
: e YeBTAD
| s338ie0
ARPA Order No.: 9099 TH23359
Contract No.: F49620-86-C-0012 g 3g g3
Contract Effective Date: 10/1/85 S 8I°gm
Contract Expiration Date: 3/31/90 g E:33
2 2333
Program Manager: G. H. Schwauttke Laso® 8 § 1=
(602) 965-2672 |56 a"a. Le tgn
Contract Monitor: Gary Witt fo 107 % amste 58 3
(202) 767-4931 mpf"" pobio® & T
ayst? % -
The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.
Prepared for:
Defense Advanced Research Projects Agency DTI C
1400 Wilson Blvd. ELECTE
Arlington, VA 22209 FEB 2 5 1988

Air Force Office of Scientific Research

AFOSR/NE
Bolling AFB, DC 20332

T W

592 4XX weem TX2 TR

P

ey
[4

Scientific Report

DIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF
GALLIUM ARSENIDE

SYSTEM REFERENCE MANUAL

Valid for Czochralski Growth Controller Software Version 2.4

Sponsored by

Defense Advanced Research Projects Agency

G. H. Schwuttke
Principal Investigator
(602) 965-2672

! Acecession For

DTIC TAB
Unannounced
Justitficatio

NTIS GRA&I =4
J
ad

Arizona State University ' By

|
Semiconductor Materials Research Laboratory I Distribut ton/ B

College of Engineering & Applied Sciences _Avstlability r‘odee
Tempe, Arizona 85287 Avois andjor

st Speclal

SECURMITY CLASSISICATION OF TeS PAGE

REPORT DOCUMENTATION PAGE

1. MEPORT SECUMITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
20 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
i lease,
gor public e
20. DECLASSIFICATION/DOWNGRADING SCHEDULE Apprmf'ed? e p imited
dist=ivat "
4. PEAFOAMING ORGANIZATION REPORT NUMBER(S) S MONITORING OAGANIZATION REPORT NUMBE R(S)
- o - 0 0 1 9
6a NAME OF PERFOAMING OQAGANIZATION b. OFFICE SYMBOL 7e. NAME OF MONITORING ORGANIZATION
Arizona State University ‘If sppiscubic)
Semiconductor Materials Lab. SPA Air Force Office of Scientific Research
6c. ADORESS (City. Siate and ZIP Code)] To. ADDRESS (City. State and ZIP Code! -
Arizona State University AFOSR/NE
Tempe, AZ 85287 Bolling AFB, D.C. 20332
Sa NAME OF FUNDING/SPONSORING Tu. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ot
F49620-86-C-0012
AFOSR/NE 10. SOURCE OF FUNDING NOS
BLDG 410 ' RNOGRAM PRO EC'T TASK WORK UNIT
» Iy J)
BOLLING AFB, DC 20332-6448 ‘“‘“‘:gi NO. C‘\OQX Cy No. No.
11, TITLE rinclude Secunty Clsasificstion) , . W@ CY,S
Digital Contrel of the Czochralski Growth of (///09 F
Gﬂi lium Arsenide Svystem Reference Manual
12. PEASONAL AUTHOR(S)
Karl Riedling
13a TYPE OF REPOAT 130, TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT
Scientific rmomM4/1/87 t012/31/87% 88/01/04 412

14. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS /Continus on reverse if necemary ani identily by block number)
_"IELD | GROUP SU8. GR. +Digital Control, ¢
GaAs - L > .
1 _Reference Manual, R B —
19. ABBTRACT (Coniinue on reverse 1f necessary snd identify by diock number: o .'/

~

> This report provides an updated and extended description (Version 2.4) of the structure and
the operation of the controller software developed for ASU$digital Czochralski Growth Control
System (CGCS) for compound semiconductors. This manual outdates all previous versions.
The Controller Software Reference Manual discusses the design considerations applied to
r digital LEC crystal growth control, gives a short overview of the growth controller computer

hardware and operating system environment, describes the functions of the CGCS from an
operator's point of view, and delineates the internal operations of the controller software by
discussing the controller software and algorithms. Various appendices provide tables of
controller software tasks, routines, and vanables, file format inform'ation, and lists of system

messages and error codes. ‘., DL K - . ER
‘ !:‘ 20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 27 ABSTRACT SECURITY CLASSIFICATION
AN
..
O -~ —
~$\, UNCLASSIFIED/UNLIMITED [SAME aS RPT. [DTIC USERS //(/\(’// RS
S 228. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICESYMBOL
'Qc) tInciude Ares Code) 77
‘! DD FORM 1473, 83 APR EOITION OF 1 JAN 73 1S USOUETE,

..
{

RRG_ s ¢

won- A ¥

ABSTRACT

! This report provides an updated and extended description (Version 2.4) of the structure and
the operation of the controller software developed for ASU's digital Czochralski Growth Control
System (CGCS) for compound semiconductors. This manual outdates all previous versions.

e

The Controller Software Reference Manual discusses the design considerations applied to
digital LEC crystal growth control, gives a short overview of the growth controller computer
hardware and operating system environment, describes the functions of the CGCS from an
operator's point of view, and delineates the internal operations of the controller software by
discussing the controller software and algorithms. Various appendices provide tables of
controller software tasks, routines, and variables, file format information, and lists of system
messages and error codes.

o, o
r

oy

2 T

"

e

) v—.‘r'\r

¥, SRR h A !,.‘0..‘
AT, b AL T Pl 840 09

Tt L Ve Ty 1 Favnh ot O O N N R O A OO DN DO IN]
NI NN R N O R K N R

Wmmmm'hw-v—v TR TR TR W W T T e —T
)

‘*'\

S
ah &
9 L
0:'

Table of Contents

ol
g
b=k

Table of Contents

At
3

N List of Illustrations ix

Y |

s SUMMAXY « ¢ « o o o o o s 5 s o o o o o o o o o s s o o o« Xi

)) %“

gﬁ';& The Scope and Structure of This Documentation xiv

it

[\ .

)? . CGCS Program Versions . . . « « « &« « « o & o o « & « « « %Xvi

;ﬁ* b

:'!h .{4‘

) 1. Introduction ¢ « « & 4 ¢ ¢ ¢ « e o o . . . 1

P

s ? & 1.1 The LEC Growth Process For Compound Semiconductors 2

AL -

L" N 1.2 A Digital Controller for GaAs Czochralski Growth . 6

t.. o+ ’5

) f- 1.3 Crystal Growth Automation 10

sl

- 2. The Hardware of the Czochralski Growth Control System 12

,‘-.'..

o 2.1 General Hardware Design ¢« v ¢« o & « o« « « 12

[

o~ E 2.2 Computer Hardware . . . « « & o o o« o o o o o o 14

oy o 2.3 Hardware Setup . . e e . S ¥

N 2.3.1 1isBC 80-24 Slngle Board Computer N T T A |

s 2.3.2 1iSBC 064A (or equivalent) Memory Expansion

‘) Board . . . ¢ . ¢ 4 4 s e 4 e 4 4 4 e e e s e« . . 18

e !; 2.3.3 1isBC 517 I/0 Expansion Board 18

W 2.3.4 1iSBC 204 Disk Controller 19

uy 2.3.5 DT772/5716-32DI-B-PGH A/D Converter Board . . . 19

k) ﬁ. 2.3.6 MP8316-V D/A Converter Board 20

ﬁﬂ be s 2.3.7 Cardcage . . .+ ¢ « . e o o e o e o o . 20

‘ 2.3.8 Console Terminal « « « .« « « « « . 20

® . 2.3.9 Printer v ¢ v e 4 e e e e e e e e . 21

P A

WG 2.4 Computer - Puller Interface e e e .22

. 2.4.1 Analog Input Signals « ¢ &« « & « . . 22

A 2.4.2 Analog Output Signals +« « « « « « « . . 26
ﬁ 2.4.3 Digital Input and Output 27

' Wowt t'.\‘ -:';\‘m. _‘&. :‘F‘jﬁ 5&' M—f WA *ﬁ."\ﬁ')

. v T e T e T EE W T T T T T "\T

»
o
NN Table of Contents
>
~ 3. System Software on the CGCS Computer 29
4 3.1 Design Considerations for a Real-Time Operating
;:5 System . . . ¢ e e A |
g 3.1.1 Intel's iRMX-80 and FORTRAN 29
o 3.1.2 The Structure of a Task in a FORTRAN-iRMX-80
R Environment . . . -
V) 3.1.3 Sharing of Common Code Sequences Between
il Several TasksS . . ¢ ¢ ¢ o o o ¢ o o o o o o o + o« « 33
Ay 3.1.4 Data Transfer Between Tasks 35
uﬂé 3.1.5 Generation of Control Structures in a FORTRAN-
o bas¢d iRMX-80 System « . % . . . B |
A 3.1.5.1 Static Task Descriptors and Task
Descriptors D ¥
s 3.1.5.2 Exchange Descrlptors e &« s+ s e « s o s« « . 38
L elv 3.1.5.3 MeSSAgeS . « « « « « + 4 o 4+« o « « « + . 40
o
S 3.1.6 Data I/O in a Real-Time System 42
:'Q 3.1.7 Naming Conventions 43
\. 3.2 Software Structure ¢ 45
.
o 3 3.3 ROM Resident Software . . . « « + « ¢« & « « « « « . 49
N 3.3.1 The RXISIS-II Monitor +« ¢« « « « . . 49
) 3.3.1.1 Monitor Commands « +« 50
Rl 3.3.1.2 Other Monitor Functions . c + + + + « . 54
3.3.1.3 The Monitor in a Real-Tlme System . « « « .« 54
3.3.1.4 Exit From the Monitor 55
3.3.2 The RXISIS-II Confidence Test 56 :
3.3.2.1 Memory Test . . . ¢« ¢ & ¢ ¢« &« o« o« o o« « « « 56
3.3.2.2 CRT Console Test « « .« 57
& 3.3.2.3 Printer Test « « « « « « « « o . . 57
%o 3.3.2.4 I/OPort Test ¢ « ¢« ¢ ¢« « « . 58
§E 3.3.2.5 Floppy Disk Test . . e ¢ « <« s e« e+ s+« . B58
Y0¥ 3.3.3 The iRMX-80 Nucleus e +« o+ « « o« + . 58
g 3.3.4 The Alternative Terminal Handler .« o e . . 59
LN 3.3.4.1 Programming Interface 61
ﬁv. 3.3.4.1.1 Line Input Operations . . e e e . . . 61
PACn 3.3.4.1.2 Console Qutput 61
j.,‘.. 3.3.4.1.3 Printer Output 62
4?? 3.3.4.1.4 Line Input and Output Request Messages 62
o 3.3.4.1.5 Single Character Input . . . 63
Q.- 3.3.4.1.6 Output Mode Setup and Input Prompt
s, String Selection 64
s, 3.3.4.1.7 Cursor Control Code Generatlon . « . . 65
e 3.3.4.1.8 Break Detection 66
j} 3.3.4.1.9 Public Parameters 66
i
", - 11 -
%
J'\-'
I\'I
b
.
@
)
;.

g
foy
3

»

- e -

°a
>
i: Table of Contents
' 3.3.4.2 User Interface of the Alternative Terminal
& Handler ¢ & &« ¢ ¢ &+ o o o o« o o« « « « « 69
) 3.3.5 The Generic Loader Task . . . e e e e e . 73
~ 3.3.6 Entry Points Into ROM Re51dent Code e+« . « . 75
oo 3.3.7 Configuration of the RXISIS-II System ROM . . . 76
' 3.4 RXISIS=II + « + « v o v o v e ettt e e e e e v o 79
P 3.4.1 The Operation of RXISIS-II ¢« « « « « « 79
=t 3.4.1.1 Available Devices 82
N 3.4.1.2 Available Programs and Functlons Under
X RXISIS=IT . « « « v o « « « . 82
ﬁ 3.4.1.2.1 1Intel Supplied Utlllty and Development
Software . . . o e e e s e « « + « . 83
o 3.4.1.2.2 Other Ut111ty Software o« e e e . 83
13 3.4.1.2.3 Programming Languages Under RXISIS II . 84
3.4.1.2.4 Special RXISIS-II Functions and
. Programs . . « + o« « o o s s o o o o o o o« o« « o« 85
3
&~ 3.4.1.3 Executing Programs Under RXISIS-II 87
. 3.4.2 The Programming Interface of RXISIS-ITI 89
A 3.4.2.1 Preparation of RXISIS-II Programs Without
Additional Tasks e e e e e e . . . 89
- 3.4.2.2 Preparation of RXISIS ITI Programs Wlth
. Additional Tasks . . + « « « « o + . « e e .91
3.4.2.3 The Preparatlon of Real-Time Appllcatlon
Systems . . e v e e e s -
g 3.4.2.4 Use of ROM Resident Routines by Application
>, Systems ¢ 4 ¢ ¢ ¢ 4 e e v 4 4 e e s e « . 93
3.4.2.5 Other Utility Routines in the Library
RXIROM.LIB . . « + ¢ « o o o s o « o o« o s o o « + 96
o>
4. The Operation of the Czochralski Growth Control System 97
4.1 Basic Operation Concepts of the CGCS 97
4.1.1 General System Design . . . « . .+ « ¢ « « « + o 97
T 4.1.2 Control Loops inthe CGCS « 103
Y 4.1.3 Diameter Evaluation in the ¢GCS 106
Y
" 4.2 Starting the CGCS . . . « + ¢ & ¢« ¢ « & « « « + « « 110
X
x 4.3 Command Set of the CGCS . + .« « « =+ & o« o« o« « o« o« o 112
4.3.1 General Remarks . . T s
hly 4.3.2 Summary of Internal Commands . . . « . 113
‘e 4.3.3 Comprehensive Description of the Internal
" CommANAS + « + « « « 4 4 e & 4 e 4 e e e e e 4 e e . 114
.?: 4.4 Parameter Ramping« « +« « & « « .« . . . 123
XY
- iii -
]
S

o

‘}‘.v-l_

- M W A RS e P
R

-
\

3
:l';‘l
t,:.

} Table of Contents
:3; 4.5 Macro CommandsS . . « ¢ « + o o o o o o o o & o « o 124
e 4.6 Disk FileS . . . v v ¢« & & ¢ ¢« « o o o« o « & « « . 126
L 4.7 Variables . . . v « ¢ 4 v e e e e e e e e e e e . o132
i 4.7.1 General RemarksS . . : + « &« &« o o « o o« o« « « o 131
W 4.7.2 Special Variables . . . « « ¢« ¢ ¢ ¢« 4 « . « . . 131
')

{-; 5. The Czochralski Growth Control System Software 135

!.

o
A 5.1 CGCS Concept and Structure 135
s 5.1.1 Program Structure « ¢ « « ¢« « « 135

5.1.2 General Program Information 136
[} \ -‘
’:} 5.2 System Interface and Auxiliary Routines 140
gl 5.2.1 iRMX-80 Control Routines - Library FRXMOD.LIB . 141

- 5.2.1.1 Non-Reentrant Message Sending/Receiving
b Routines . . . ¢« + « ¢ v o ¢ ¢« o o o o o o« « o« « o 141
® 5.2.1.2 Reentrant Message Sending/Receiving
e Routines s« o e s+ « . 145
< 5.2.1.3 Interface Routines for 1RMX 80 Nucleus
s Functions O -1
ol 5.2.1.4 "Flag Interrupt" Serv1ce Routines 153
.- 5.2.1.5 Access Control Routines 156
{ 5.2.1.6 System Error Messages « « « « .« . . 159
[5.2.1.7 Free Space Manager Initialization 161
AN
.:ﬁf 5.2.2 Console, Printer, and Buffer Input/Output
N Routines - Libraries FIORMX.LIB, FIOISS.LIB,

e FIORXI.LIB, and FIORXR.LIB « « ¢ @« « « « . . 163
f) 5.2.2.1 Input/output Initialization 167
e 5.2.2.2 Input Routines « . . . 169

. 5.2.2.2.1 Programming Interface 169
,ﬁf 5.2.2.2.2 Operator Interface 177

J'::

o 5.2.2.3 Output Routines 180

;“ 5.2.2.4 I/O Mode Selection and Auxiliary Routines . 191

. 5.2.2.4.1 Input Mode Selection Routine FRINMD . . 191
Sy 5.2.2.4.2 Output Mode Selection Routine FROUTM . 192
g 5.2.2.4.3 Printer Mode Selection Routine FRPRMD . 193
g 5.2.2.4.4 Input Prompt String Selection Routine
b FRINPR . . ¢« ¢ ¢ « o o o« o « o & o o « « « « « + 193
‘! 5.2.2.4.5 Screen Clearing Routine FRCLRO 194
;‘f 5.2.2.4.6 Printer Timeout Setting Routine FRSPTO 195
[, 5.2.2.4.7 Output Mode Change Indicator Function
N FRMCHG + « « + « & & o « o« o o o « o« o« » 195
-7
7 5.2.2.5 Control String Building Routine FRCSTR . . 196
:;a 5.2.2.6 Auxiliary Routines 197

X
o - iv -

% |

w

1

TR T AN RN DRt LTI L O LT TR P b Oy 5’ '
> Al I NSNS W AN ANNLYY, n'-‘o' A t“‘l‘\‘ ':' " .

'.'\.C\".l:_l.. RAS RS AN ACN B 8

Table of Contents

5.2.2.7 ISIS-II and RXISIS-1I Versions of the I/0

Routines & + ¢ ¢« &+ ¢ v o o o o s+ o o « « » 199
5.2.2.8 Configuration Constants Used by the I/O
Routines« o s e 202
5.2.2.9 CGCS-Specific I/0 Routlnes s+ 4 e s e« . . 203
5.2.3 Disk Interface Routines - Libraries FXDISK.LIB
and FXDSKI.LIB . . ¢ & ¢ « o o o o 4 o o o o« o« « « « 206
5.2.3.1 Disk File Opening - Routine FROPEN 209
5.2.3.2 Reading From a Disk File - Routine FRREAD . 210
5.2.3.3 Writing To a Disk File - Routine FRWRTE . . 211
5.2.3.4 Access to Random Files - Routine FRSEEK . . 212
5.2.3.5 Disk File Closing - Routine FRCLSE 212
5.2.3.6 Program Loading - Routine FRLOAD 213
5.2.3.7 Directory Maintenance - Routines FRATTR,
FRDELT, and FRRNME ¢« « « + « « o« « 214
5.2.3.8 Exit to Operating System - Routine FREXIT . 216
5.2.3.9 Disk File Status Checking = Function FRDSTA 216
5.2.3.10 Disk Error Message Generation - Routine
FXDSKE . ¢« & ¢« o o« o o o o s o o s o o o o o o o« « 217
5.2.4 General Utility Routines - Library FXUTIL.LIB . 219
5.2.4.1 Timer Task FXTIME « « « « « o« « « 219
5.2.4.2 Console Input Routines FXOCNS, FXRCNS, and
FXCCNS ¢ & & ¢ & 4 e o o o o o o o o o o o o & o« » 223
5.2.4.3 Command Line Interpreter Support Routines . 225
5.2.4.4 Data Transfer To and From Absolute Memory .
Locations . . . & & ¢« ¢ ¢ ¢ ¢ v 4 e 4 e e e e . . 227
5.2.4.5 Overflow Protected Integer Arithmetics . . 229 !
5.2.5 High-Speed Hardware-Based Floating-Point
Routines - Library FP8231.LIB « « &« + &« « . 232
5.2.5.1 General Information 232
5.2.5.2 Additional Routines in FP8231.LIB 235
5.2.5.3 The Implementation of the Alternative
FORTRAN-80 Floating-Point Routines 236
3 The High~Level Growth Controller Software 238
5.3.1 The Operator Interface 238
5.3.1.1 The Console CRT Screen « . + « . » 238
5.3.1.2 Auxiliary I/O Routines 239
5.3.1.3 The Command Interpreter - Task RXIROM . . . 240
5.3.1.3.1 Overlay CzZOV01 - Module SETPAR -
Commands SET and CHANGE . . . ¢ « « « « « « . o 247
5.3.1.3.2 Overlay CZOV02 - Module SETVAR -
Commands SET and CHANGE « « « « « . . 250
5.3.1.3.3 Overlay CZOV03 -~ Module COMMEN -
Command COMMENT ¢ ¢ ¢ « o « « o« « « o 251
5.3.1.3.4 Overlay CZ0V04 - Modules MENOUT anad
CLRSCR - Command HELP . . .« + « « ¢ « « « « . . 251
-v—

> 'r"}”;‘:\a".-\¢:.-“a NS

Ll

- . P At
A NN T T N A A T e LT
7L -\.'{A.‘).'.su.t& .\f.\"kﬁ_.& IVERCALSS TN <

T Ty YT wTTw Ao 4 b o Rt il R e S

Table of Contents

5.3.1.3.5 Overlay CZOV05 - Modules OPMODE and

CILRSCR - Command MODE . . . ¢« ¢ « &« o o « « .« . 252
5.3.1.3.6 Overlay CZ0V06 - Module DEBUGO - DEBUG

CommanNdsS .« « « o ¢ « s o o o o o o o o o « o« « o 253
5.3.1.3.7 Overlay CZ0V07 - Module DEBUGl - DEBUG

CommMAanNAS .« ¢« « ¢ o o s o o o o o o & o o « o « o 254
5.3.1.3.8 Overlay CZ0V08 - Modules FRAME and

TIMLIN - Command RESTORE . . . e + « « . 255
5.3.1.3.9 Overlay CzZOV09 - Module FILES -

Command FILES « + « « 255
5.3.1.3.10 Overlay CZOVlO - Module REQCMF -

Commands START and FILES . . ¢« +« ¢ « « « « « . . 256
5.3.1.3.11 Overlay CZ0V1l - Module CALCUL -

Command CALCULATE e e e e e a4 s e s e e s+ o e o 257

5.3.1.3.12 Overlay CZOV12 - Module DATAFI -
Commands FILES and DATA « . « « « + « . 257
5.3.1.3.13 Overlay CZ0V13 - Module EXICZ0 -

Command EXIT e « o « e« + e e o « o . 258
5.3.1.3.14 Overlay CZOV14 - Module CONDIT -

Command IF s e v s e e e« & « & s . 259
5.3.1.3.15 Overlay CZOV15 - Module DISPLY -

Command DISPLAY « .« . 260
5.3.1.3.16 Overlay CZOV16 Module DOCUMT -

Commands FILES and DOCUMENTATION . e . « +« . 260

5.3.1.3.17 Overlay CZOV17 - Module DIRECT -

Command DIR . . &+ + « o « « « + « o« o« « « « « « 260
5.3.1.3.18 Overlay CZOV18 - Module RESOVL -

Command RESET . . ¢ « « « o« ¢ o &+ o o « « o+ o . 261
5.3.1.3.19 Overlay CZOV19 Module INIDAT -

Command INITIALIZE . . e e e e s e s e s+ « . 261
5.3.1.3.20 Overlay CzZOV20 Module PLOTOV -

Command PLOT]
5.3.1.3.21 Overlay CZOVZl - Module CLEARO -

Command CLEAR . « « « ¢ o =« o + o o o o« o« « o« » 262
5.3.1.4 The Command Executor - Task CMMDEX 263
5.3.1.4.1 Command Message Processing 263
5.3.1.4.2 The Ramping Executor 268

5.3.1.4.3 Floating-Point Conversion of Measured
4 Data . e e e e e e e e e e e e e e e e e .. 269
: 5.3.1.4.4 DEBUG Data Retrieval 269
5.3.1.4.5 Conditional Command Executor 269
5.3.1.4.6 Data Dump to the Documentation File . . 270
5.3.1.4.7 Analog Output to a Chart Recorder . . . 271
5.3.1.4.8 Program Code Integrity Check 271
5.3.1.5 The Measured Data Output Task - Task MEASDO 272
5.3.1.6 The Command File Input Task - Task CMFINP . 273
5.3.1.7 The Command File Output Task - Task CMFOUT 274
5.3.1.8 The Disk Output Task - Task DSKOUT 274

- vi -

W

L oA
-~

-~
‘f : Table of Contents
5.3.2 The Process Controller « . . 275

(q 5.3.2.1 The PID Controller Routine FRPIDC 275

o 5.3.2.2 The Diameter Controller - Task DIACNT . . . 281

N 5.3.2.2.1 The Diameter Controller Routine

:.; N Proper - Module DIACNT . . . « ¢ « « « « « « . . 281

RS 5.3.2.2.2 Anomaly Compensation - Routine ANOMLY . 284

b 5.3.2.2.3 Diameter Evaluation Algorithms -

Routine SHAPE ¢ ¢« « o &« & « « « « . . 285

A 5.3.2.2.4 The Initialization of the Routine

T SHAPE - Routine RESET + ¢« + « « + o« . 298

v 5.3.2.2.5 The Re-Activation of SHAPE - Routine

P REACTV . . + v v 4 v o o o v e v e v e v o o o . 299

ot

: 5.3.2.3 The Analog Data Controller - Task ANACNT . 299

SN 5.3.2.3.1 The Analog Controller Routine Proper -

e o Module ANACNT . . . & + & « & v & « & o o o o« . 299

-7 5.3.2.3.2 The Analog Data Input Routine ANAINP . 302

A 5.3.2.3.3 The Relay Controller Routine MOTDIR . . 304

N 5.3.2.3.4 The Analog Data Output Routine ANAOPT . 306
& 5.3.2.3.5 The Low-Pass Filter Routine LOWPAS . . 307

"C

£ -

AU 6. CGCS Software Configuration 310

.

o

{ E 7. Supporting Programs for the ¢CGCS 315

i 7.1 Data File Display Utility SHODAT 315

" o~ 7.1.1 General Remarks+ « & & & o o o« &« + « o« 315

i“ 7.1.2 Running SHODAT « « &« &« &« « « « « . . 317

7.2 Macro Command Editing and Displaying - Programs
COMMED and READCM ¢ & 4 & « o « o « o « » o« « 320
7.2.1 General Remarks « . « 4+« « « & « o« « o 320
7.2.2 The Macro Command File Editor COMME e« . . . 321
7.2.3 The Macro Command File Display Utility READCM . 324

N

-~ x

2ppendix 1: Additional Documentation 325

Appendix 2: Hardware Setup and Testing 327

-

. L I.JCK‘» ".?r‘ ’(_,l."'j.l.’
l':l Y

: 32 Appendix 3: Operating System Memory Allocation 331
Appendix 4: Disk Error Codes « « « « « « + . . 334
AANRY
‘2 ﬁ: Appendix 5: Command Line Editing and Control Characters
L under RXISIS-II and the CGCS . . . « + ¢« « « « o « o « o 337 |
o: o
°.
'f - vii -
LY
o
-8
o
e,
Y

) e e e et e A e N
s, ol DR TS P R NN ‘ et gl L "

B

s
o
WM
™
N
A Table of Contents
\':\'
N Appendix 6: Utility Programs Under RXISIS-II 340
(Appendix 6.1: File Attribute Modification Utilit
Y
iq ATTSET . . ¢ ¢ ¢ v 4 v o o o o o o o o o o = . . 340
TN Appendix 6.2: Disk Comparison Utility CMPDSK . . . 342
N Appendix 6.3: File Comparison Utility cCOMP 343
o Appendix 6.4: Enhanced File Copy Utility COPYCP . . . 345
e Appendix 6.5: Disk Copy Utility CPYDSK 346
v Appendix 6.6: File Generation Utility CREATE 348
SN Appendix 6.7: Disk Directory List Utility DIRFIL . . . 349
L Appendix 6.8: File Conversion Utility HEXCHK 350
RGN Appendix 6.9: File Listing Utility LIST+ . 351
NN Appendir 6.10: File Display Utility SHOW . . .o 353
SN
) Appendix 7: CGCS Memory and I/O0O Maps 354
NN Appendix 7.1: Memory Map e e e e . . 354
oo Appendix 7.2: I/O Map . . e e e e e e e e e e e . 354
o Appendix 8: System Tasks 11
N Appendix 8.1: ROM Resident System Tasks e v e e . . 356
rY Appendix 8.2: 1iRMX-80 System Tasks in the CGCS 357
NN Appendix 8.3: FORTRAN - iRMX-80 Interface Tasks . . 357
e Appendix 8.4: Controller Tasks « . . . 358
)l -
EN . .
*:? Appendix 9: Routine Names + + o o « « &+ o« o . . 361
ﬁﬁﬁ Appendix 9.1: FORTRAN-iRMX-80 Interface Routine Names . 361
‘ Appendix 9.2: Controller Routine Names 365
- Appendix 10: COMMON BlockS .+ + « « ¢ &« & « o « o« o « « . 369
) Appendix 11: Variable Names e e e e . 373
2 Appendix 11.1: Most Important Varlables e A
o Appendix 11.2: Complete List of Variables, Sorted by
2 ADATESS + + v 4 v v o e e e e e e e e e e e e 379
el Appendix 11.3: Variable Addresses for CGCS Versions
o 2.0 - 2.4 e e e e e e e e .+« 385
-
oty Appendix 12: CGCS File Formats e« « . 392
re Appendix 12.1: Variable Name File CZONAM.Vmn 392
.2(Appendix 12.2: Variable Name Source File 392
e Appendix 12.3: Macro Command Files 393
SOA Appendix 12.4: Data Files e e e e e e e e e . . 396
'
.:i- Appendix 13: Czochralski Growth Control System Messages 399
P
Q" Appendix 14: Dynamic Behavior of the PID Controller
‘i Routine 405
oA
>,
CAL
A
e
Q?
:ﬁ: - viii -
U
b
Y
o
L2
D ,;* -
b,
‘ ‘:‘ L4 < - - - - - - -« - . ‘.- - - - \-
NN N R NN N NN R R DU RN NERL NN, "

SN

TES:

(ol

List of Illustrations

2L LS
I ¢

,.
i~ 3

List of Illustrations

Fig. 1: A Czochralski puller for compound semicon-

v s w' " F s
5

-~ ductor crystal growth. 3
'\ Fig. 2: Implementation of the digital Czochralski
VW, Growth Control System. 6
"' Fig. 3: Hardware memory map of the CGCS computer. . . . 14
e
L Fig. 4: Block diagram of the CGCS computer. 15
o Fig. 5: Analog input interface. 24
4 .-_:
Y Fig. 6: Analog output interface. 26
Cd
b ?» Fig. 7: Memory maps of the CGCS controller com-
ris puter under RXISIS-II (a), and of an Intel
f development system under ISIS-II (b). 47
L[] \.
13$ Fig. 8: Configuration of the RXISIS-II system ROM. . . . 78
. Fig. 9: Console screen of the ¢GCS. 97
T
~ Fig. 10: Comrand execution in the ¢cGcs. 101
-~ - Fig. 11: Control loop for one of the four motors in
e the CGCS (analog/digital and digital/
“ analog conversions are not explicitly
' shown). . . ¢« v ¢ ¢ ¢ 4« o v v v e e v e e« « . . 104
s
Ry~ Fig. 12: Heater temperature and crystal diameter
K- control loops (analog/digital and digital/
Lo analog conversions are not explicitly
ﬁ i shown). . . . ¢« & v ¢ o ¢ ¢ o « « o« & o « « « . 105 !
¥ i
!‘ﬂ Fig. 13: Crucible position control loop (analog/ f
" ﬁ: digital and digital/analog conversions are
‘ not explicitly shown). « +. « « . « . 106
N 3: Fig. 14: Block diagram of the evaluation algorithms
n for the crystal diameter, the growth rate,
} the crystal length grown, and the crucible
YRy position setpoint (analog/digital and
: 5 digital/analog conversions are not ex-
N ’ plicitly shown). « « « « « . . 107
Pa
pA ;' Fig. 15: Command Interpreter overlays. 137
9 a
[} - ix -
e o
o ::-
(
N
¢
Sy
¢
N b L 0 Lt T L S B e L e e e L e B s

O X0 1

4
| @

e Y o

'

&

s

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fiqg.

Fig.

Fig.

Fig.

16:

17:

18:

19:

20:

Al:

A2:

A3:

A4:

AS5:

A6:

A7:

List of Illustrations

Memory map of the CGCS.
Command processing in the C¢GCs. . . .

Growth of a crystal partially immersed in
an oxide encapsulant melt.
Volume of a paraboloid section.

Interpolation algorithm for the evaluation
of the crystal diameter at the boric oxide
encapsulant surface, and of the volume
immersed.

"Actual" input signal used for the simula-
LiONS. & v v 4 i e e e e e e e e e e e e

Controller output signal (full line) and
error integral (broken line) for unlimited
operation with no option active.

Controller output signal (full line) and
error integral (broken line) for output
signal limiting with no anti-windup. . . .

Controller output signal (full line) and
error integral (broken line) for output
signal limiting with anti-windup mode A. .

Controller output signal (full line) and
error integral (broken line) for output
signal limiting with anti-windup mode B. .

Controller output signal (full line) and
error integral (broken line) for integral
limiting but no output signal limiting. .

Controller output signal (full line) and
error integral (broken line) for 1ntegral
and output signal limiting.

R N R f| ¥ ‘,' .)
"'.f A e .'I‘o \\ .“.'l-. ‘ |0. .'

138

246

286

291

294

405

406

407

408

410

410

411

".D‘\‘ "'o 5¢|) l‘

. B ., - a . - - - . . [. < ” 7 - " Sl Salh Al o il
", o u- .

4

15

19 -,

SN

: e Summary
N

. Ei Summary

f: - This manual constitutes a comprehensive documentation of
(< process control, system, and auxiliary software developed by
I Arizona State University with the target c¢f designing a
T digital controller system for the Liquid Encapsulated

k Czochralski (LEC) growth of gallium arsenide single crystals.
\

L)

Digital crystal growth control was chosen because of its sign-

- ificant advantages over the standard analog approach:
f::% * Better reproducibility of process parameters and control
IHDA actions.
o o * A higher degree of flexibility with respect to operation
:'f procedures and process parameters.
SR * Powerful process automation. r
P
iy X

q° * Expanded process data logging facilities.

o The digital Czochralski Growth Control System (CGCS) is based
~Q§ on a microcomputer built around an Intel 8085 microprocessor.

-

The system hardware consists of commercial OEM components; the
microcomputer features 16 KBytes of Read Only Memory (ROM) and
56 KBytes of Random Access Memory (RAM), an Intel 8231 Numeric
\ Processor, two industrial standard 8" single sided, single
N density flexible disk drives, and the Analog/Digital and Digi-
L tal/Analog Converters and Input/Output (I/0) hardware which it
. requires to interface to the Czochralski puller. 1In addition
. to a console CRT terminal, a line printer and a multi-channel
chart recorder are provided. The controller computer was de-

! signed as a multi-purpose unit which permits, in addition to
the actual process control, to execute auxiliary programs for
. the maintenance of disks and disk files, and for the prepara-

L R AR S

\'-‘-
=

. < tion and evaluation of growth runs. The operating system used

IR is Intel's Real-Time Multitasking Executive iRMX-80; a special
¢ system environment, RXISIS-II, was developed for the execution

P 7 of utility and support progranms.

S

1 The CGCS is wired to monitor process data in parallel to the
. standard analog growth controller; its output can alternative-

™ & ly replace the analog controller's output. For reasons of
] simplicity, it uses part of the analog system's signal condi-
¢ tioning and output circuitry. In particular, it provides the
A analog motor speed and the heater power controllers with speed

- 7 and power setpoints. The digital system can be operated in

S five modes each of which is an inclusive set of the preceding
- ones:

A

LI

.A

- xi -

>
»
A
-
¢

D

«®

e Summary

(1) Monitoring: The CGCS collects data from the puller which
can be displayed and recorded, but it does not control the
puller.

(2) Manual: The CGCS controls the growth process but allows
only to enter setpoints for the primary process parameters
(temperatures, motor speeds). No closed-loop diameter
control is possible.

(3) Diameter: This mode includes closed-loop diameter con-
trol, based on the standard weighing method. Special al-
gorithms compensate for the buoyancy effects caused by the
encapsulation melt.

(4) Diameter/ASC: 1In addition to the above features, an anom-
aly compensation technique is used, which makes the diame-
ter calculated by the CGCS more reliable.

(5) Automatic: A special algorithm permits to maintain the
crystal-melt interface at a constant location within the
heater, regardless of the amount of melt depleted due to
crystal growth.

The CGCS software allows to dynamically access any parameter,
including the parameters of controller loops, by direct opera-
tor commands. An arbitrary number of data locations can be
identified with a symbolic name, and displayed, modified, and
used for the decision-making process built into the CGCS.
Parameters may be "ramped" within an arbitrary time from their
current to their intended final values. Commands may be re-
corded on special disk files which may be edited and replayed
as "Macro" commands during a later run; the sequence and tim-
ing of the recorded commands is exactly reproduced. These
commands can be arbitrarily interspersed with new commands en-
tered on the console; the resulting command sequence may be
recorded again, which gives the system a learning ability.
Macro command files may comprise any number of commands and
can easily be invoked by name. A special feature permits to
execute Macro commands conditionally, i.e., if and when a
specified relation between an arbitrary system parameter and a
constant value is reached. These properties of the CGCS allow
to execute the crystal growth process essentially automati-
cally, without the necessity of operator interactions. Crys-
tals grown under automatic control exhibit improved uniformity
of their electrical and crystallographic properties, compared
to conventionally produced LEC crystals. Process yield in
terms of single crystals and of usable wafers per crystal is
distinctly superior to the yield of the standard analog tech-

nique.

- xii -

4 %

[) :r'lls
. e
< \fﬂ.ﬂ an ﬂ.‘"'n LR

4 %Y

2" s

------ ‘_-._-":" I I N _'""‘f:'f‘i.‘f.‘d‘\4":{,:4':-":"':3:1'

" Al
ESS XS - /
N B N S S A AR R R A S N P AT

o

< _"-"“-f .

e

A=Y

I'u'.‘

[3
-

227

L]

ta

¥y Y
Pea

b |

X

Summary

Great emphasis was put on the design of the operator-machine
interface: A specially formatted CRT console screen provides
information about all data measured by the CGCS. Command
entry is interactive, with as much flexibility as possible for
the format of the commands. Several help menus and extensive
command prompts guide the operator. The dialogue between the
operator and the CGCS can be recorded either on disk, or on a
line printer; each item is tagged with the time when it was
issued. This permits, in conjunction with the data recording
facilities of the CGCS, to trace the effects of a particular
operation or event; the data taken during a run can be sub-
mitted to various process analysis and modelling approaches.

- xiii -

p L . c N 3) - o0 o !) ' B)
\,‘\&"&F 3 ., g a0 . A AR : D) ke, IO

The Scope and Structure of This Documentation

The Scope and Structure of This Documentation

This documentation comprises the entire software for the
Czochralski Growth Control System, and for functions related
to it. Although it also addresses the hardware configuration
and operation as far as necessary, it should not be considered
a hardware manual. Particularly in the sections detailing the
actual process controller operations (chapter 5.3), readers
proficient in FORTRAN may find it advantageous to have the
program listings at hand (which are very extensively
commented, too); frequently, references are made within this
manual to the names of program variables or routines. It is,
however, not necessary to study the source programs for using
this documentation. With regard to the volume of this
Reference Manual, information on Intel's operating systems
ISIS-II and iRMX-80 for which detailed publications are
commercially available is kept as concise as possible. These
publications and a number of additional documentations which
may supplement the material presented here are 1listed in
Appendix 1.

This System Reference Manual comprises seven main chapters and
fourteen appendices. After a short introduction in chapter 1
to the LEC process for compound semiconductor crystal growth,
and the consideraticns applying to its automation, the hard-
ware environment of the CGCS is discussed in chapter 2, where
also CGCS-specific details about the configuration of the com-
puter hardware are presented. Appendix 2 contains a procedure
for the initial setup and test of the CGCS computer.

Chapter 3 discusses the operating system environment of the
CGCS, starting with some views on the specific demands imposed
on the software in a real-time environment, and delineating
subsequently the operating system firmware in Read Only Memory
(ROM), and the disk based operating system emulator RXISIS-II
which provides favorable conditions for the execution of auxi-
liary and supporting software. (A number of file management
utility programs for use under RXISIS-II which have been writ-
ten by the author are presented in Appendix 6.)

The functional concepts and design of the CGCS are the topic
discussed in chapter 4; this section provides also some in-
structions for the use of the CGCS, as far as required for
understanding the operation of the software.

Chapter 5 consists of three sub-sections which cover the
structure and two distinct parts of the CGCS software, respec-
tively: Chapter 5.2 describes the interface to and the func-
tions of a large number of system interface routines; section
5.3, the growth controller software proper, broken down into

- ¥xiv -

'I*‘*if' » - "‘ "

a
-,

Y58
¥

T
A %y 4y
.

8

w

AL

-
-,
- -
NS
&
NN

" &

ST, .'J. ";"J&'S.

h

LAAS

'

YRS

' .{. -

The Scope and Structure of This Documentation

an operator interface, and the process control functions.
Although the system interface routines covered by chapter 5.2
are, indeed, "black boxes" for the higher-level parts of the
CGCS, a thorough understanding of their operations was never-
theless considered essential for a complete comprehension of
the high-level controller software. The -resentation of the
controller routines is augmented in Appendix 14 by a discus-
sion of the dynamic response of the generic PID- (Proportion-
al-Integral-Derivative) controller routine under various
operation modes.

Chapter 6 discloses the procedure required for combining the
program modules discussed in chapter 5 into an operational
process control program, which is, due to the complexity of
the CGCS, not trivial either.

The final chapter 7 concludes the survey of the CGCS software
by discussing three auxiliary programs which support the oper-
ation of the CGCS and which can be executed on the CGCS com-
puter under RXISIS-II (or on an Intellec Series II Development
System under ISIS-II).

The appendices not mentioned so far contain summaries of in-
formation which should be accessed easily for reference pur-
poses, e.g., memory maps, disk error codes, disk file formats,
system messages, or routine and variable names.

w v (O A Sta hon Rta Roe Aan AR A9 CeLWLw WU e, FW L FL W, TN LY & N T N T I TR T T YT T T T YT ETETIET RTIW T O

a e am

‘_\b'-. SV K g

CGCS Program Versions

CGCS Program Versions

T

This section describes the "evolution" of the documentation
for the Czochralski Growth Control System by 1listing the
features introduced with each release. Information on the
CGCS software as given in this documentation is based upon
version 2.4 of the Czochralski Growth Control System.

%

: Versjion 1.3: (Octcber 19, 1985)

)

: (Version 1.3 was the first program release actually used for
b growing gallium arsenide crystals.)

) Version 1.4: (December 5, 1985)

v (1) INITIALIZE sets the diameter setpoint to the seed diame-
‘e ter. (This feature was discontinued from Version 2.1 on.)
q

d (2) The Diameter evaluation routines check for zero seed lift

speed and disable diameter calculation in this case.

Y. (3) An automatic RESET is executed when required.
((4) The calculated Diameter is recorded in the Data file.
- Version 1.5: (February 1986)

- (1) RESET permits the entry of an initial value for the Crys-
* tal Weight and/or the Length Grown. (The effect of RESET
% on the Crystal Weight is a new feature of this release.)
[
ﬁj (2) The length of the crystal stored by the buoyancy compensa-
v tion part of the diameter calculation routine was in-
o creased from 37.5 millimeters to 75 millimeters. The
: thickness of one "slice" is approximately 0.5 mm; the
o maximum permitted seed travel speed exceeds 200 mm/h.

(Pe

- (3) The actual Diameter value is automatically copied to the
' Diameter setpoints when any diameter controlled mode is
K entered.

e
o Version 1.6: (February 18, 1986)
‘:' (1) The Data Dump facility was newly introduced. Extra rec-
o ords are written to the Data file in case of an error
'a detacted by the Diameter Evaluation routines.

: - xvi -
' L]
) »

. .

e
s

O O e e A TATIITR . (et A MM NN

R

P

CGCS Program Versions

SOl PP U

(2) The crystal diameter is evaluated with the actual growth
rate rather than with the (actual) seed lift speed.

=

', (3) The Diameter Evaluation routines were modified to recover
. o automatically from Speed Overflow errors. (In previous
SO versions, such errors disabled the diameter evaluation

permanently; a RESET command was required to recover from
1w this condition.)
,

S
vl Version 2.0: (April 11, 1986)

w &

- 2 (1) The number of ramping channels was increased from 8 to 20.
N (2) The maximum number of Conditional commands is 8 rather
SR than 2. Conditional commands entered while already 8
- Conditional commands are pending are ignored. (In earlier
> . ¢4 s ¥ :

s, versions, a Conditional Macro command issued while already
x % two Conditional commands were pending replaced the older
q P~ one) .

: o (3) A Selective CLEAR command was introduced which permits to
N remove only those Conditional Macro commands from the
b Cond’tional Command queue which pertain to a specified

e Variable.

by n (4) The PLOT feature was implemented, providing 8 analog chan-
& nels for the output of arbitrary INTEGER*2 parameters,
5 plus a set of pre-processed system parameters (Tempera-
T tures, Diameter error, Growth Rate, and Crucible Position
. error).

~AR

(5) 8 INTEGER*2 DUMMY locations were provided as a Macro com-
mand scratchpad.

>
(v .
TN (6) The CGCS can be put into a TEST mode. (Program patches
b s (in ANACNT) were required in previous versions to execute
. run simulations.)
WV ’_,}

N

" Version 2.1: (October 13, 1986)
) k (1) An erroneous algorithm in the Diameter Evaluation routine
vl was corrected which resulted in a relative error of the
': calculated Growth Rate in the order of 10 percent.
W
v oy (2) The buoyancy compensation routines were re-designed. In
‘o particular, a new interpolation algorithm was used for the
! . determination of the crystal diameter at the top surface
i » of the boric oxide encapsulant. A partial compensation of

[

- xvii -

-

S }‘,}'j" '*_$ ‘\‘.\'\ ‘\J‘y
L A e N Wy BV

s T M AW oW

WL W) Wy Wy €y W VT g W W Wy X W LA AN -\' q.'.q -“ 3 ! » o w —'\'u"-'\i"‘\
At BGA, Nt "" «, A . -.I " A '.‘ﬁf'-t.r'. 9,004, ... J'V -

N

o
8 ..
T
o
“
%,
-,
N (3)
;{?
\ '-_.'
T
»
\
e
3 2
oy (4)
.
i
- (5)
5
)
'\.:;-
o (1)
e
N
- (2)
{
vy
o
I (3)
\h
‘.P
§ .
§.n
2
(4)
I::‘l
i (5)
L
'1
‘;'\
o
P
") (6)
@.
N9
4 f'
'i
o~ (7)
. ““o

K

o

7
[A

5
.&?.{ [

&,

;?;' o

CGCS Program Versions

the effects caused by melt recession at the end of the
growth process was provided.

Two new operation modes of the PID controller routine are
available with release 2.1. They provide different ap-
proaches for a safe "anti-windup" function which improves
the dynamic behavior of the controller in its output lim-
ited regime.

The scaling of the Heater and Base Temperature output to
the chart recorder was improved. A Variable-defined out-
put range permits a flexible adaptation of the chart re-
corder output to various operating conditions.

A timeout for the printer interface was activated. This
feature prevents a defective or un-selected printer from
suspending the operation of the system.

Version 2.2: (October 24, 1986)

A new, more stable diameter interpolation algorithm re-
places part of the procedures introduced with Version 2.1.

The melt recession compensation algorithms were improved.
A numeric parameter permits to adapt the Diameter Evalua-
tion routines to arbitrary degrees of melt recession.

The (square of the) crystal diameter stored in a table
internal to the Diameter Evaluation routine is checked for
excessive deviations with respect to its previous value,
and adjusted accordingly if necessary.

A check for a possible boric oxide encapsulant height
overflow permits to run the CGCS safely with increased
boric oxide charges.

Conditional command checking is disabled for several sec-
onds after a new (Conditional or unconditional) Macro
command was started, in order to make sure that at least
the first command of a Macro file can be executed in any
case.

An improved Macro command execution sequence guarantees
the proper processing of Macro commands even in the case
of transient disk errors.

The generation of the Data disk file which was performed
by two tasks in previous versions (one, collecting data in
a buffer, and one, writing the buffer to disk) was concen-

- xviii -

RITGI RN S ARG TR RN

LA 20000 4 At au dcn an e Sk Blte- AR .V\ﬂmm

CGCS Program Versions

trated in one single task. This measure provides the
‘ memory space required for the installation of the other

software enhancements and reduces the probability of a

temporary system deadlock due to a lack of pool memory,
. with the penalty of a possible minor record timing inac-
curacy in the case of very short intervals between Data
file records.

v a_ s
N

S8

Version 2.3: (December 5, 1986)

(1) A periodic memory check was provided in this release, com-
prising the RAM resident main program code.

o Version 2.4: (August 11, 1987)

- (1) The algorithms for the diameter evaluation were changed to
" determine the growth rate from the current rather than the
previous crystal diameter.

- (2) A safety limit was imposed on the calculated diameter
o value used internally by the Diameter Evaluation routine,
which protects the operation of the CGCS in case of severe
transients imposed on the measured system parameters.

(3) A parameter THETA was newly introduced into the motor PID
controllers which permits to set any operation mode be-
tween the feed-forward algorithm used up to now (THETA =
256) and a plain PID controller function (THETA = 0).

RY |

S

%"

N

L]

lsl

L 4

- xXix -

A et A %At \ T AT T A R AT AT A AT AT AN LY AT A AT LA
-\‘_l.'\.’-'.‘,\'\("\',\.',-. ~ o \J,\{.f-_’\ \{\‘,\'-‘ T f"-’\'”{ >

- o AN N AN

TSV TV ITEANN T Ny SR Y LWL W e T

1. Introduction
1. Introduction

The Czochralski Growth Control System Reference Manual en-
deavors to give a comprehensive description of the computer
hardware and the software used in the autonomous digital
growth controller for the LEC process for GaAs. This control-
ler, specifically, the software which performs the process
control operations, will be referred to as "Czochralski Growth
Control System" (CGCS) throughout this manual.

The first section of this documentation will be devoted to an
overview of the LEC process and its automated digital control.
The second part deals with the computer hardware used, and its
implementation. Next, we will discuss the operating system
environment of the CGCS, and the implementation of various
auxiliary and utility programs. The last main chapter, final-
ly, details the software design of the CGCS proper, starting
with the description of interface routines which are otherwise
to be considered as "black boxes" within the contrcller soft-
ware, and ending with the discussion of the high-level control
routines. The configuration of the modules constituting the
CGCS into the final operational software package, and the
description of some support programs for the CGCS will con-
clude the System Reference Manual.

! - U B A AN AN G N T BN P A N A T
LTS, SRR (LT N g AT e N ..
{:&ﬁ&t LALLM, v

1.1 The LEC Growth Process For Compound Semiconductors

1.1 The LEC Growth Process For Compound Semiconductors

The Czochralski process is gaining increased importance not
only for the growth of high purity silicon crystals but also
for the large scale production of compound semiconductors like
gallium arsenide. Although Czochralski grown GaAs crystals do
not yet reach low dislocation densities comparable to those
ocbtainable with the major competitor process, the Bridgeman
technique, the Czochralski process offers, nevertheless, sig-
nificant advantages over boat growth processes:

* The stoichiometry and the purity of Czochralski-grown
crystals is superior to the properties of boat-grown
ones. Semi-insulating substrates can be obtained with
less or without chromium doping.

* The Czochralski process is better suited for a large scale
production, and it is therefore cheaper.

A Czochralski puller (Fig. 1) consists essentially of a heated
crucible made of quartz or boron nitride which contains the
semiconductor melt. A small single crystal rod, the seed, is
immersed into the melt and slowly lifted. The melt whose tem-
perature is kept slightly above the semiconductor's melting
point solidifies at the interface to the seed; with the proper
temperature distribution and seed lift speed, a cylindrical
single crystal can be grown whose crystallographic orientation
is determined by the orientation of the seed. The crucible
and the seed are rotated in opposite directions in order to
minimize the influence of potential inhomogeneities of the
temperature distribution inside the furnace. An inert atmo-
sphere, usually argon, prevents the oxidation of the melt and
of the crystal.

The growth of compound semiconductors like GaAs is impeded by
the fact that these materials tend to dissociate at higher
temperatures. The two components are bound together only
loosely, and the one with the higher gas pressure (in our
case, arsenic) tends to evaporate to a greater degree than the
other (gallium), which results in intolerable deviations from
stoichiometry and, in consequence, in bad electrical charac-
teristics. While the miscellaneous variations of the Bridge-
man process employ hermetically sealed quartz ampoules to pre-
vent the loss of the volatile component, two approaches are
used in the Czochralski process, either individually or com-
bined: First, the pressure of the inert atmosphere inside the ‘
puller is increased to several hundred psis in order to coun- ‘
terbalance the arsenic vapor pressure, and, second, the semi-

conductor melt and the part of the crystal next to it are en-

&t ‘. *
DR

L B
A -2 -
l"’
s
"',
e
:.'
¥l
o
lh.l
AL
N
"."‘. ~ Te W N T P L . - ~ SOOI Nl Ry NS AT AN .';ﬂ‘,p
P S A ICAC N » . . ot N PP AN AT A AN
N, SRR R AT et Loy Lol

- -

MY Y S

.‘?

T SL.

-
(¥
1 1.

1; 1; l;

Ay

A
‘l‘ 'v

e

SRRY LA et i
¥ %. "“‘l .V .l. .I

P

aa
P

<

> T
Petatl

25

TEPIYY)
X

e

- > e

«
-

>
.«

¥

o

UK,

s La%E atd ot ik -ard oFR afl L ol i ol otk ol ol o o ol e SR A R 2 A A A A A

1.1 The LEC Growth Process For Compound Semiconductors

capsulated in a vitreous melt of boric oxide (hence "Liquid
Encapsulated Czochralski" (LEC) process).

SEED ROTATION
MOTOR

——SEED LIFT
MOTOR

CONE ——SEED

N BORIC OXIDE
), ENCAPSULATION
/]

LCRYSTAL/ CRUCIBLE

V

r BODY / |

000

aAs MELT

HEATER

o

CRUCIBLE LIH%% CRUCIBLE ROT.
MOTOR e MOTOR

Fig. 1: A Czochralski puller for compound semiconductor
crystal growth.

Technical applications of semiconductor single crystals re-
guire a defined, and preferably cylindrical, shape of the
crystal ingots which have to be sliced into wafers with given
dimensions. Semiconductor crystal growth implies, therefore,
an efficient control of the diameter of the crystals grown.

-3 -

R

< 1
[ll‘ll‘;r" l“ "'-

v
Pais

.‘.“.g

el
- ..’ '.’ -"

1.1 The LEC Growth Process For Compound Semiconductors

Neither must the diameter drop below a minimum value (which
would prohibit cutting a wafer with the specified diameter),
nor should the diameter exceed its nominal value too much
since the excess material is wasted as it must be ground away
before the ingot is sliced into wafers. Conventional Czoch-
ralski pullers for compound semiconductors determine the diam-
eter of the growing crystal from the increase of its weight
per unit time which is obviously proportional to the crystal
volume solidified per time. Taking a constant pull rate,
i.e., a constant height of the incremental solid cylinder, for
granted, this volume is proportional to the square of the
crystal diameter. Diameter control can be effected by chang-
ing the temperature of the melt and/or the pull rate appropri-
ately: The solidification of the molten semiconductor materi-
al generates heat which must be removed from the interface
between the crystal and the melt in order to permit a continu-
ous growth. The amount of heat which can be removed from the
interface is, however, determined by the geometry of the fur-
nace and of the crystal, and it is more or less constant.
Increasing the temperature of the melt permits therefore less
material to solidify, which results in a reduction of the
crystal diameter if the pull rate is kept constant. On the
other hand, an increase of the pull rate while the melt tempe-
rature 1is maintained has the consequence that the roughly
constant volume of semiconductor material which can be solidi-
fied per unit time has to be stretched out to a longer and
narrower cylinder, thus reducing the crystal diameter, and
vice versa. (Compound semiconductors are, however, generally
grown with temperature based diameter control since changes of
the pull rate tend to deteriorate the material quality.)

A basic compound semiconductor puller features, therefore, the
following elements (compare Fig. 1):

(1) A temperature controlled heater.

(2) Four speed controlled motors which are in charge of
(a) the rotation of the crucible;
(b) the rotation of the crystal:
(c) the seed lifting motion; and

(d) the 1lifting of the crucible which keeps the interface
between the melt and the solid crystal at the same
location within the heater in order to guarantee a
constant temperature profile at the critical interface
region.

RSP L A L -\- o \-.._‘:_ "-_;_." .'-J'.":f CVRIE V. W
v > .

o

R g
T N .
N A A A A A A e A AN IS,

LM o ol A T e A

A A” N L] --qll
L SR R \\\\,‘J‘,N\.ﬁ\

- - TENRTRTTETT R RTTRET R N RTRETRT

‘2: ‘
,si
n\‘-t o
_5j'i 1.1 The LEC Growth Process For Compound Semiconductors
Ny
oW (3) An electronic balance which permits to determine the crys-
n tal's weight and the weight increment; the latter signal
v can be used to control the heater temperature in order to
y}ﬁ maintain a defined crystal diameter.
{Q;-f Conventional compound semiconductor Czochralski pullers use
YOV analog electronic circuits to control the heater temperature
\ LA and the motor speeds. Although this is an obvious approach
SO (since all input and output parameters are inherently analog
B signals), there are several severe drawbacks associated with
:§: analog control circuitry:
1 NS
o (1) Analog controllers usually obtain their control parameters
(e.g., the gain of a controller amplifier) from the set-
A ting of a potentiometer. It is not only difficult (and,
Aﬁ w frequently, impossible) to modify such parameters dynami-
Ly cally during a growth run although this might be desir-
ﬁﬁ . able, it is also problematic to return to exactly the same
A la ;- settings which were used during earlier experiments once a
o parameter was changed.
A
A (2) Despite of the fact that there are analog controllers on
LA the market which feature a high degree of automation, the
AN actual growth process is basically determined by the human
SR operator. The high degree of human interaction, combined
{ E with the questionable repeatability of an analog system,
0 makes it difficult to guarantee exactly reproducible
Y . .
S growth conditions for subsequent growth runs.
SN
_qﬁ o (3) Crystal growth is, in fact, a very complex and not yet
P sufficiently understood process. A better understanding
f) of the process which is the prerequisite for any process
e improvement can, however, be based only upon the thorough
'js" analysis of actual growth data. The logging of process
:ﬁ data, particularly, of a greater number of data channels,
M,

is a very awkward procedure in an analog system; usually,
crystal growers have to be content with in the order of
three data channels logged on an analog chart recorder.

e,
5)‘_.'-
PO

'

o
AR .
e All these considerations favor the introduction of digital
e computer control for Czochralski crystal growth. A numerical-
o ly based control permits not only absolute reproducibility of
Eflfj process parameters; it can much more readily be interfaced to
N automation approcaches, and it permits, last but not least, the
!; recording of growth data in a form suitable for later computer
NN analysis.
AT
A
VA
SR
0.
‘
0y - s
g
!-,' ..n
-.,: o
s
o
T T
B

f - - - " - - > -
>, L b ¥ | A R, YA Mo T g Wy Ry My p ~ v -t V - S R N, -, f -
o.l':"fu'i'c Wyl ,w":'.";."::‘f::' i R Al et .'a ! “' s st .'o'l 2 O e LIRS SONCY

2

-

o 1.2 A Digital Controller for GaAs Czochralski Growth
) 1.2 A pigital controller for GaAs Czochralski Growth
!ﬁ¢ The basic target of the ASU project towards digital control of
AN the Czochralski process for GaAs crystal growth was to replace

o the standard analog controller supplied by Cambridge Instru-

~Tn ments, the company that built and delivered the puller proper,
o by a suitable computer-based controller. Since the entire
\ setup is basically an experimental one, great emphasis had to
iy be put on versatility and flexibility. Therefore, the ap-
0 proach shown in Fig. 2 was chosen:

':f The digital controller is connected in parallel to the stan-
o dard analog system. Both systems monitor in parallel the out-

put signals generated by the puller's sensors. Switches (ac-

. tually, relays driven by the digital controller) permit to
o apply control signals to the puller either from the analog or
}}g from the digital controller. This allows, in conjunction with
;i- the proper software support, to switch control between both
" systems even during a growth run, which is particularly impor-
Lt tant during the setup and tuning of the digital controller.
!Q For reasons of simplicity, the digital system uses part of the
e signal conditioning circuitry and the motor controller and
o heater SCR circuits of the standard analog console. The digi-
S tal system supplies, therefore, only motor speed and heater
. power setpoints; the standard analog controller's circuitry
i - provides closed-loop motor speed and heater power control.
o

o

B

P, _-"\.-4 T

) ANALOG

T -

::? : CONTROLLER

e]

i -

e |

T |

o — DIGITAL

;:j L CONTROLLER

o e

s . « "ANALOG

O; + DIGITAL

e
';ﬁf Fig. 2: Implementation of the digital Czochralski Growth
YA Control System.

o -6 -

-t

“an
b

e

>

o

Y W AR Cn 0 > e R R e AW S RN e Y L R
R G N WEAEAE "’-,-..\‘\ STt
A AN, x

» s 0, b 2

LTS WT W UV W RYWRTUNYPRYFELWTVFyES Tq« RO R

-
N
-

il
Ca

1.2 A Digital Controller for GaAs Czochralski Growth

Furthermore, only those functions of the puller which directly
affect the growth conditions are digitally controlled. Al-
though the digital system is therefore not capable of running
the puller entirely without the standard analog circuitry,
> - this restriction to the most important operations permits to
. concentrate on features which are essential for the crystal
growth, and facilitates the hardware and software implementa-
tion of the digital controller.

‘I

B

The following analog signal sources were chosen to be moni-
tored by the digital controller, in parallel to the analog
Cambridge console:

exs

(1) Three thermocouples, measuring up to three heater zone

temperatures. (Currently, only a single-zone heater is in
use.)

[...l:.l‘.]

(2) Four tachometers which are connected to the four motors
for seed and crucible 1lift and rotation. (In contrast to
the Cambridge Instruments terminology of "crystal" 1lift
and rotation, we are using "seed" lift and rotation within

_ this documentation and within the software, in order to

s avoid confusions of "crystal" and "crucible", particularly

' in abbreviations.)

Tas

NS
)

(3) Up to three wattmeters which are connected to the puller's
heater(s).

,H
L _ 5
:

£
.

(4) The weight gauge monitoring the crystal weight.

.&‘ﬂ.

(5) An analog differentiator circuit which generates a signal
proportional to the first derivative of the crystal weight
with regard to time. Determining the differential weight
with an analog circuit rather than calculating it numeri-
cally from the plain weight was found advantageous because

:x the crystal weight changes very slowly due to the slow
A growth of compound semiconductors. In order to allow to

calculate with a reasonable resolution the differential
- weight from the plain weight in practical time intervals,
N the weight signal would have, therefore, required an

extremely high analog-to-digital resolution, in excess of
_ 20 bits. Suitable hardware is hardly commercially avail-
X < able, at least, for an affordable price. In contrast, a

- resolution of 14 bits is sufficient for all signals, in-
' cluding the plain weight, if analog weight differentiation
' is used.

(6) Two potentiometers which return voltages proportional to
the current positions of the seed and the crucible, re-

r. spectively.

=1

-7 -
~
.\
"
L
4
,’4-« ‘..'.'."v oy ',
ARy
m".'n..x.‘fh";’h".‘.i’.‘;.’r_s 10NN,

Ny
)

NN
l'& ")‘k

Ca
)
PR 1 LI

o 5
1?;?

A2y

AN L

P Y

Y

e
N ." .‘. \._\ _'1 _-l

ORE"A% T A "R e R e At S - Al A e i A

1.2 A Digital cController for GaAs Czochralski Growth

(7) A thermocouple measuring the temperature at the bottom of
the crucible ("base temperature").

(8) A pressure gauge sensing the pressure inside the puller's
vessel.

(9) The "contact device" which is basically an ohmmeter cir-
cuit which monitors the resistance between the seed and
the melt. This resistance drops from infinity to a cer-
tain value when the seed touches the (semiconducting)
boric oxide encapsulation melt, and it drops further when
contact between the seed and the actual semiconductor nelt
is established.

(10) Eight spare channels which can be used to record additio-
nal information (for example, the outputs of auxiliary
thermocouples) together with growth data.

The signals which are supplied by the digital controller as
replacements for the analog system's outputs are:

(1) Three heater SCR control voltages, anticipating a three-
zone heater. (Currently, only one control voltage is
used.)

(2) Four speed control voltages for the seed and crucible 1lift
and rotation motors.

(3) Up to eight internal parameters can be submitted to a
digital/analog conversion; the resulting eight analog
signals can be recorded on a suitable multi-channel chart
recorder.

In addition, digital signals are monitored by the digital
controller and provided for the puller:

(1) Four motor direction signals: They are required, in addi-
tion to the (unipolar) speed control voltages, in order to
determine the direction of motor motion (up or down, or
clockwise or counterclockwise). The same control signals
are also used within the standard analog controller; these
signals generated by the analog circuitry are monitored by
the digital system to provide complete status information.

(2) One master control signal: All control signal changeover
relays are energized to select the digital system as a
control signal source if this signal is present. Other-
wise, the analog controller is in full charge of the
puller. This is obviously an output-only signal of the

computer systen.

]

NN

&

b -~ :‘\c

N, = 1.2 A Digital controller for GaAs Czochralski Growth

The quasi-parallel operation of the analog and the digital
controllers suggests a multi-step approach for the implementa-

[
I

i tion of the computer-based system which is, indeed, supported
aa by the digital controller software. Each of the following
SLIRY operation modes is upwardly compatible to the previous ones,
b providing all their functions plus some additional ones:

[‘1) Monitoring: The puller is still controlled by the analog
system; the computer can be used to collect, display, and
o record measured data. This operation mode is evidently

- essential for establishing the proper operation of the

x
T

:; - data acquisition hard- and software, and it can be used to
s compare the actions of both controllers.
o (2) Manual Growth: The control signals for the heater(s) and
a{ o~ the four motors are generated by the digital system.
,:f Still, they result directly from temperature and speed
S setpoints, and no closed-loop diameter control is per-
RN formed. The power applied to the heater(s) can be con-
e trolled in two ways: The system permits to provide three
temperature setpoints, and one power limit value. The
D heater power output is determined by a temperature control
4

loop while it is less than or equal to the limit value; it
is set to the limit value if the temperature controller
. would request a greater heater power. The transition be-
tween both sub-modes is smooth and transparent to the

TNy
"").r;‘JJ-'J
v

ERS |

.

‘ > user.

-:‘:

-Q -~ (3) Diameter Control: 1In this mode, the heater temperature is
_j - not only determined by its (manually entered) setpoint but
- also by a control loop which tries to keep the measured
: . crystal diameter close to its corresponding setpoint.
e A (For practical reasons, the "manual" temperature setpoint
ri ' is corrected only slightly according to the diameter de-
N viations, which results in a safer operation and gives im-
N ﬁ: proved control over the growth parameters.)

N (4) Crucible Lift Control: The semiconductor melt in the cru-
5 3 cible is gradually depleted while the crystal is grown.
. In order to maintain the solid-liquid interface at the
3: same location within the heater, which is essential for
. reproducible crystal growth, the crucible has to be raised
-y slowly during the growth run. This is done automatically
"'* in this operation mode, using a specially developed algo-
> rithm.

k. o

N

:-:,

-

° .

N - -

[} - (\ 9

1 ~

Yo

B

PR

o

W s

’*
N TS ~

- . - D - . LR - - m YAt ALt ORI Y W
\\f'f*‘\?‘“ .—r';\ ‘.\.‘\.‘.u. ..:\N‘:f:"'\'f ﬁ.p\’v'&'\.ﬁ'é. "-‘-* s

~ W T G A T T L T AT
R AN R S S 2 o s

TR N T

o
:j 1.3 Crystal Growth Automation
v

1.3 cCrystal Growth Automation

ot A significant improvement of the current performance of the
. crystal growth process, in particular, of its yield, can only
T be expected if it is possible to grow crystals reproducibly,
o with repeatable properties. This implies, however, a higher
. degree of process automation in order to reduce the influence
\ of the irregularities inevitably induced by human control

;?4 actions. Evidently, a digital controller is much more suit-
- able for automating a process than the conventional analog
Cu systems. (Although the Cambridge Instruments analog control-
;5 ler permits to control the crystal diameter automatically over
b large parts of the growth process, its total operation is far
. from automatic, and some very crucial operator actions are
NG still required within the "automatic" growth phase.)
iﬁ: The digital Czochralski Growth Control System (CGCS) was, in
AN general, designed to duplicate the existing analog controller.
iﬂ{ This 1is not true, however, for the approach chosen towards
.‘ process automation. Our approach is not based upon a simple
o control of essentially one system parameter (namely, of the
crystal diameter setpoint) but on the reproduction of all
actions pertaining to the process. However, crystal growth is
- a highly complex operation which is strongly influenced by
o unforeseeable effects like random changes in the melt flow
. patterns in the crucible. It was, therefore, regarded an im-
oy possible task to automate an entire growth run by blindly re-
P~ peating a fixed pattern of actions in a deterministic control-
o ler; we felt automation could only be achieved reasonably by
~5 splitting the process into small steps which are more prom-
o ising targets for automatic control, and by the application of
t) heuristic approaches. The system was, furthermore, designed
to permit gradual improvements of such process steps, in order
e to optimize them more or less independently. The optimized
. steps can be joined together in a suitable way, being executed
e conditionally if required, to finally control an entire growth
OOt run.
r‘_‘-__
., The following features were therefore provided in the digital
jﬁﬂ Czochralski Growth Control System in order to allow the opti-
::{j mization of the growth process:
o0
7o (1) The system permits to modify interactively not only the
‘ actual growth data setpoints (for example, the diameter or
25 the motor speed setpoints) but also any arbitrary internal
R system parameter ("Variable'") which has an impact on the
e process. This applies specifically to the control 1loop
‘}E parameters (e.g., to the gain of a control loop).
o
e,
- 10 -
L
N
e
SN
o
A T e e e N A u?}s; A A e o B N LN e TN e
by v e A R al o Rb Nl Aa e W W% 1Y W W " R Wy) N) SUTA A

2

s

~ .

)

-
.

L

XA

el

b _Ag

SE oM.

1.3 Crystal Growth Automation

(2) The above changes can be made not only instantaneously but
also slowly, by "ramping" a parameter linearly from its
current to its intended final value within an arbitrary
time. This approach prevents not only abrupt changes
which are likely to upset a delicate process, it offers
also a simple but efficient tool to automate process se-
quences. (For example, the cone between the seed and the
crystal body can be grown by a ramp of the crystal diame-
ter setpoint from the seed diameter to the intended crys-
tal diameter over a time determined by the pull rate and
the planned cone length.)

(3) Operator commands which affect the actual growth process
can be optionally recorded on a disk file; the time at
which a command was issued (relative to the start of com-
mand recording) is added as a tag to each command record.
These "Macro" command files can be edited off-line, and
invoked during a later growth run where they repeat exact-
ly the recorded sequence of operator actions. Since pre-
recorded commands may be arbitrarily interspersed with
commands entered by the operator during the run, and since
the combined sequence of commands may be recorded again on
a new disk file, the system achieves a "learning" ability.
This command recording makes sense for self-contained
process steps only (for example, for heating up the fur-
nace, or for starting the growth proper), but it saves the
operator a number of actions which frequently have to be
done within a very limited time, and it prevents the inad-
vertent omission of important process steps.

(4) Further process automation can be achieved by the condi-
tional execution of such Macro command files. A pre-re-
corded set of commands is started only if and when a sys-
tem parameter which can be arbitrarily defined with the
pertinent command incurs a certain numeric relation (e.g.,
greater than or equal) to a given constant. Such Condi-
tional commands may also be issued from a Macro file; it
is, therefore, possible to concatenate Macro files depend-
ing on the current status of the system. Even relatively
complex process steps like seeding can thus be automated.

The current design of the Czochralski Growth Control System
does effectively permit a fully automated growth. The task of
the operator is reduced to supervising the process and inter-
acting in the case of a malfunction (e.g., 1if the crystal
"twins"). The current CGCS can not react to such events simp-
ly because it can not "see" them. Any attempt to include such
features in an automated controller must therefore be based on
the introduction of additional information, for example, of
data supplied by suitable optical sensors.

- 1] -

b sl ol qal tad gl Andh Sni > - Cy e S AN - -V - ®

sen

\ XL s
7

|
1.

-
LA
OOSLY

Lo

-
2y Xy
.

w
.

".l’.‘)’.l ,
s

Yy
S N

- .
'f‘f
r

o el
(77

x5 A

-
1
-

R ¥+

Sah

v

ﬁ
L

RN
LY

R4
5 4
« A 1

Pl oy
.

LR

W n S S

C

IO
s
S

+ &

o
<

--‘al
.
XA AR
SRR R ARE

~
R

N » -

v
-

¥

L AN
.

SXTES
YU
AN

y
A

SaN G

WAL

4 3
? "-.‘

-

» U * Rat J F AL FHERWRLET S HLW L E LWLV . HLE. N W L i W %

2.1 General Hardware Design
2. The Hardware of the Czochralski Growth Control System

2.1 General Hardware Design

The digital Czochralski Growth Control system consists essen-
tially of two parts which are linked together relatively
loosely: One part, the "brains" of the system, is a suitable
microcomputer, the other part is constituted by the hardware
which interfaces the digital control computer to the essenti-
ally analog outside world. We will deal with both parts sep-
arately.

Microcomputer systems for industrial applications are usually
designed exactly for the control task which they have to per-
form, i.e., with built-in software and a dedicated interface
to the operator and to the process they have to control. Fre-
quently, they feature only a very restricted set of function
keys for operator input, and limited display facilities for
the output of system status and data. We felt that such a
system concept would hardly meet the requirements of an exper-
imental system which was supposed to offer the following char-
acteristics:

* Flexibility: The system software must be easy to modify,
in order to adapt the system to varying demands, to intro-
duce new features, and, last but not least, to correct
programming errors.

* Versatility: The control computer should not only be able
to control growth runs but also assist in the evaluation
of measured data taken during crystal growth, and permit
the preparation of experiments.

* Stand-alone operation: The growth controller computer
should be used as a stand-alone unit, without requiring a
host system for data transfer, evaluation, and mainte-
nance.

* Interactive operation: The system should be run in an
interactive mode, permitting a dialogue between the opera-
tor and the controller computer. This was regarded par-
ticularly important since the main target of the project
was to learn about the dynamics of the crystal growth
process, rather than producing crystals on a large scale
according to pre-determined rules.

* Data display and logging facilities: As a consequence of
the above considerations, it was regarded essential that
the system should be able to display, evaluate, and record
as many growth related parameters as possible.

- 12 -

LR I R S I S T T T T LT AN A VT A N TR N ALY N7 A B F RN Rat ¥ B g " - d
ol s, "_1 he e w" N P T \- , .,., IO A T TS o S A e A N

A R AN

TR T TR TR TR TR TR R E TN Ty VA TLT L Y Y

b - 2.1 General Hardware Design
All these demands cannot be fulfilled by a dedicated computer

tq system with completely built-in software resident in ROM (Read
R Only Memory). It is not only an awkward procedure to mcdify
ROM resident programs, particularly if frequent changes are

- required, it 1is even close to impossible to accommodate

- lengthy and frequently conflicting routines within the limited
: memory space available. Since it was necessary anyhow to pro-
vide mass storage devices for growth run data logging, we
! planned a generic disk-based microcomputer system which per-
mits to load arbitrary programs from flexible disks. Command
input to and data output from the control computer is handled
by a standard CRT terminal which permits interactive operation
and data display.

A

L. '_f_-\:.-;-.fff"; RPN, ¢\-\f f\f.q o . .J‘J.f_f\J\f\)\r\f\$N¢
-
Lol ". CRCEN JO.':\. A‘:m'.h’u..{‘ugm Tt

2.2 Computer Hardware

2.2 Computer Hardware

The hardware of the controller computer is based upon an Intel
8085 eight-bit microprocessor. This particular processor was
chosen because of the vast experience we already had with it
and because of the support software which was already avail-
able for it, which permitted to expect a fast system develop-
ment. The experiences made with comparable applications
showed that the processor's performance is sufficient if a
system is well designed. The 8085 is able to address a 64
KByte memory space (plus 256 Input/Output (I/0) ports); with
regard to the desired flexibility and versatility, as much of
this memory space as possible was to consist of read-write
memory (RAM - Random Access Memory). Only the absolute mini-
mum of ROM which is indispensable for the operation of a com-
puter was provided; the ROM resident code has, essentially, to
control the loading of the actual application software from
disk. The memory components available suggested, in addition,
a memory bank switching approach which further reduces the
amount of memory space consumed by ROM: The total ROM area of
16 KBytes is subdivided into two banks of equal size which can
be activated alternately and which consume, therefore, only 8
KBytes of address space. One bank holds confidence test rou-
tines and a Monitor which are only needed for starting and/or
debugging the system; the other bank is reserved for perma-
nently required operating system routines. Therefore, 56
KBytes are available for RAM within the 64 K2ytes address
space; Fig. 3 shows a memory map of the controller computer.

FFFFH

£000H

CO00H

EXPANSION
AQOCH 48 KBYTES
RAM
8000H
5000H
400CH
N - 30ARD

QA 3KBYTES
2000H

ROM BANK 1 | ROMBANKO { 8+8KBYTES

J000H

Fig. 3: Hardware memory map of the CGCS computer.

- 14 -

NN MY N I A N A N N A R L R
O, A R O by S A ol lad,

v
42
<

TR
. LA I -

-
’

b

LR A S N N LR Y

llam e s

2.2 Computer Hardware

DONSOLE MATRIX TRART 915K "Ci 358 CRYSTAL PULLER
TERMINAL PRINTER AECCROER DANES
I A L3 ¥ ¥ ¥ L)
e T T P
RELAYS ‘ ; | SIGNAL
. NTERFACE | | CONDIT.
. I : ; |
') —_—
INTER- FACE — i o l

iS8X 331 . SBC M| ? |

Vath i | Memory ‘ !

Coeroc. i Expans'log |
e [I L ;
iSBC 80-24{ | iSBC 064A |, 11SBC 517 | |iSBC 204 | MP 8316-V| . DT 77/5T16
Single Board| | Memory ¢ 0 l Floppy Disk D/A A/D
Computer | | Expansion | 1 Expansion ! | Conlrolles Converter ! Converter

INTEL MULTIBUS

CONTROLLER COMPUTER

Fig. 4: Block diagram of the CGCS computer.

The controller computer is built of commercial OEM (Original
Equipment Manufacturer) components most of which are supplied
by Intel Corporation; these boards are interconnected via
Intel's Multibus. The system configuration is shown in Fig.
4: An Intel iSBC 80-24 Single Board Computer board holds the
8085 CPU, the 2x8 KBytes of ROM, 8 KBytes of high-speed RAM,
and an Intel 8231 Arithmetic Processing Unit (APU) on an iSBX
331 expansion board which permits to increase the throughput,
particularly of data output to the system console. Two expan-
sion boards, an iSBC 517 I/O, and an iSBC 064A Memory Expan-
sion Board, provide additional I/O lines and the remaining 48
KBytes of RAM, respectively. (An iSBC 028A board was used in
the ASU system instead of the iSBC 064A board due to avail-
ability reasons. Both boards are interchangeable in the
controller computer; in either case, only 56 KBytes of the 64
KBytes RAM on the iSBC 064A, or of the 128 KBytes RAM on the
iSBC 028A are used.) An iSBC 204 Floppy Disk Controller board
constitutes the interface to the mass storage which consists
of two (industrial standard) 8" single side, single density
flexible disk drives with a storage capacity of 250 KBytes
each.

W W MY W W W B W WL W S VL YW W LN N WL L WL W WL Wt L T " AR " -
v A AT T B

P A

- LA 2] - - Sl =
N NS N S S AR AN AT S

5!

[g

&

$530%;

@®
_I‘:{“J .

X

'l"
AR ES

—~ A UEN

s

CEEEP D .

§a e

»

St

KA

oS .*,.':,. @55u552

ot
S,

e s RANS

s e 2
-f {n'n'\'\"l."""
FALA

.
280 @
Ny, o

L

:‘.\

~
>

Py

.--
L

2.2 Computer Hardware

A standard "dumb" CRT terminal serving as an operator console
is connected to the iSBC 80-24 Single Board Computer via an
RS-232 serial interface. A similar serial interface on the
iSBC 517 I/0 Expansion Board connects to a printer whose main
task is providing a hard copy of the dialogue between the
operator and the Czochralski Growth Control System.

The controller computer has to monitor and generate a number
of analog and digital signals which were listed in chapter 1.2
of this documentation. The interface to the analog signals
consists of one Analog-to-Digital (A/D) and one Digital-to-
Analcg (D/A) Converter board. Both boards are interconnected
to the microcomputer proper via the Multibus system bus; data
is read from and written to them via I/O port accesses.

The A/D Converter is a Data Translation DT772/5716-32DI-B-PGH
board which features 32 differential input channels with a
sensitivity of +10 V (which may be increased by a factor of up
to 8 under software control). The voltage of the (software
selectable) input channel is converted into a 16 bit integer
value by the board, corresponding to a resolution of 1/65,536;
this data is read and eventually processed by the computer. A
bank of isolation amplifiers between the signal sources and
the A/D converter prevents ground loops which might induce
noise and provides the necessary pre-amplification of low-
level signals like the outputs of thermocouples.

The analog control voltages for the puller are output by a
Burr-Brown MP8316-V D/A Converter board. This board features
16 channels with an output voltage swing of 0 ... 10 V; its
resolution is 12 bit (1/4,096). Eight of the 16 output chan-
nels are reserved for the interconnection to an analog chart
recorder for on-line data output.

Digital I/O of the motor direction information and of the con-
troller selection is performed via a series of digital I/O
ports on the iSBC 517 I/O Expansion Board. These signals are
buffered and pre-processed by a simple external digital cir-
cuit. Relays constitute the actual input and output interface
to the puller, permitting absolute isolation between the pul-
ler's circuitry and the computer.

- 16 -

) L T T RIS TR T e Ve P S T I G T TS T TR IS
? -\J\J};.r\r },' .\ . .r\\a__.' 5 PP,

WA *‘5\--

mmmwww‘vvwvvwv’rrr:mr;v:nr.w"-\wy-u-u—‘~.».-..~.-.. Tem et wm = - - = T - R -)

-,
N)

2.3 Hardware Setup

2.3 Hardware Setup

y 2.3.1 isBC 80-24 Single Board Computer

A detailed description of the operation of the iSBC 80-24
board is contained in Intel's iSBC 80~24 Single Board Computer

Hardware Reference Manual (order No 142648-001). In general,
12 the default settings listed there, and the hardware modifica-
o tions specified in Intel's 1iRMX-80 User's Guide (order No
T 9800522-05) apply. If the following specifications contradict
the data supplied by Intel, however, the information given in

N this documentation is valid.

The jumpers listed below have to be removed from the board
. (the numbers in parentheses refer to the sheet of the Intel
- schematics and to the location on this sheet):

, E83 - EB84 (9-B4)
N E84 - E85 (9-B4)
H E100 - E118 (9-C4)
E101 - E106 (9-C4)
E119 - E120 (9-C4)
E148 - E149 (4-C7)

TVRNGTY WX KNS Nl Y Y TR T v T,
,_'-.l r ! .J'Al.d

. The following jumpers have to be added:

El41

E144 (3-B7): This jumper suppresses CPU wait states
if ROM is accessed. Even 2732A EPROMs
with 250 ns access time were found to
be fast enough to be read without

intervening wait states.

. E102 E91 (9-B4): Connects Multimodule interrupt MINTR1

o (J6) to IRO.

; E101 - E118 (9-C4): Connects output of Timer 0 to IR1.

e

- E100 - E106 (9-C4): Connects MULTIBUS INT2/ to IR2.
- E99 - E105 (9-C4): Connects MULTIBUS INT3/ to IR3.

E98 - E109 (9-C4): Connects MULTIBUS INT4/ to IR4.
-~ E97 -~ E110 (9-C4): Connects MULTIBUS INTS/ to IRS.

¢ Connects 80-24 USART RxRDY to IRS6.
Connects 80-24 USART TxRDY via OR gate
(U34-9) to IR7.

- E84 - E112 (9-C4): Connects MULTIBUS INT7/ via OR gate

- E96 - E117 (9-B4
E83 - E115 (9-B4

— —
.o

o (U34-10) to IR7.
E119 - E114 (9-C3): Connects U15-9 (PFIN/ latch) to
v INTRS5.5.
=
[
—17_

S W) o " -ll. E,w{ A B I Ty T L a R S N Uy NENCURINCN RTINS
L J‘M‘v“'m ..;_." ARV AMNA el i u e ?n Tl 't & 3 » LYY
YJ&)}J- NA{ JM L At Cp Al L LV “ B, ! Y

PRI

NASS. @Y.

2.3 Hardware Setup

'

ey)

The following modifications are required for proper PROM type
{ decoding:

NN

(a) Install the single jumper in J7 (4-B6) between pins 6 and
9.

s

oy

(b) Remove the four-line jumper in J8 (4-B6). Install an
8-pin header in J8 which has three parallel jumpers be-
tween pins 9 and 10, 8 and 11, and 7 and 12, respectively.
Connect a wire from J8, pin 13, to wire-wrap post E80.
Alternatively, a wire connection can be made on the solder
side of the board between J8, pin 13, and pin 4 of the
8085 CPU (U36).

(SN

- N
o ¥ Jad
. - 4 1

P
e'ala’a

-

These connections simulate a set of four 2716 EPROMs to the
address decoder. The address pins All of the 2732A EPROMs
actually used are connected to the SOD output of the 8085 CPU,
which permits ROM bank switching.

Install the iSBC 301 RAM expansion board, and make sure that
the maximum RAM address is set to 3FFFH on the 80-24 board
(Jumper 154-155; default factory configuration). Install the
iSBX 331 Arithmetic Processing Unit in Multimodule connector
J6 (i.e., in the Multimodule connector in the center of the
board). No changes of the default configuration of the iSBX
331 APU board are required. Refer to Intel's iSBX 331 Fixed/
Floating-Point Math Multimodule Board Hardware Reference
Manual (order No 142668-001) for further information.

. g Sy d
':1.!}:“-?/".' LR

b

z

oy
‘- .I '! .l

e

¥ N amd’

%

¥ 2.3.2 iSBC 064A (or equivalent) Memory Expansion Board

b Set the base address of the 64 KByte RAM to 00000H. (This is
T the factory default configuration of all boards with more than
Pt 32 KBytes RAM.) No further connections or modifications are
e required. Refer to Intel's iSBC 016A/032A/064A/028A/056A RAM
o Board Hardware Reference Manual (order No 143572-001) for the
@ details of the board setup.

o8

‘-

‘-

v

- 2.3.3_iSBC 517 I/O Expansion Board

ol

e Set the I/O base address of the board to O0BOH (jumper pad S2
[1-6 and jumpers 87-88). Remove jumper 103-111. Connect the
ﬁ TxRDY and RxRDY outputs of the 8251A USART on the 517 board to
-i’ the MULTIBUS INT7/ and INTS/ lines, respectively (jumpers 97-
- 105 and 96-107). Make sure the baud rate generator for the
') USART is wired for 153.6 kHz (corresponding to 9600 Baud),
d

: d - 18 -

g

p)

g

[

R

[V 2R S aF SR o S o l'q"."fl‘f

| Y e) v
-

M Ve

) d'lf..;

o, o,
MAIAY

Y

BN . T A U A P o~
S A NI AT 5Ji.r RO N

o L
W > ot
AL 2T AT N

WETLELTY Tw e TR TR ETRETEEER T WYER "\"‘L-T

oo 2.3 Hardware Setup

which is the factory default configuration (jumper pad S1 1-
4) . Refer to Intel's iSBC 517 I/0 Expansion Board Hardware
Reference Manual (order No 9800388-01) for further informa-
tion.

2.3.4 isSBC 204 Disk Controller

Set the I/0 base address of the board to 80H (DIP switch S2:
4-off, 5-off, 6-0ff, 7-on). Connect the Controller's inter-
rupt output to MULTIBUS INT2/ (jumper 63-67). Configure the
disk drives as required (compare Intel's iSBC 204 Flexible
Diskette Controller Hardware Reference Manual (order No
9800568A), and the documentation supplied by the manufacturer
of the drives), and connect them to the controller.

2.3.5 DT772/5716-32DI-B-PGH A/D Converter Board

Configure the board for I/0 mapped operation at an 8-bit base
address of 20H:

Remove the following jumpers:

W 4 (memory-I/0 mode)
W 6 (memory-I/0 mode)
W12 (addressing mode)
w33 .

W34 .

W73 (addressing mode)
W36 -~ W42 (base address)
W2 (INH1/)

W3 (INH2/)

W20 (error interrupt)
w21 (data ready interrupt)

Install the following jumpers:

W S (memory-I/0 mode)
W 7 (memory-I/0 mode)
W31 (base address)

All other jumpers should be left at the factory configuration.
Refer to the User Manual for DT772 Series Analog Input Systems

for MULTIBUS Computers (document number UM-02829-A) for fur-
ther information.

- 19 -

--------------------- » Y ‘. [N T S

I N P A IR TN I I PP JE§ N AL, AN N A A A N N A AN AT A
0oag Ry R R ! - \ ha e Y S Y .Y "y SRR ™ \

nﬂ? W)* A‘_’J ﬂn. X L."’._':,)Ln.fmht l» "} . RSy i "

0
°
A
]
*

hY
=

LN

2.3 Hardware Setup

2.3.6 MP8316-V D/A Converter Board

The D/A converter board must be operated I/O-mapped, with a
base address of 40H. Its output voltage must be unipolar, 0

to 10 volts. The foilowing, and only the following, Jjumpers
must be set on the board:

W 3 *
W 5
W17
W19 *
w21
w23
W25 *
W27 *
w29
W31l *
W33 *
W34
W37 *
W41l
W43

(* denotes the default factory setting.)

2.3.7 cCardcage

Assign the highest MULTIBUS priority to the iSBC 204 Disk Con-
troller. Install a mate for the 80-24 board's P2 connector,
and connect a momentary action switch (if possible, a switch
labeled "INTERRUPT") between ground and P2-19 (PFIN/). This
switch causes an RST 5.5 interrupt if pressed, which is used
by the ROM resident code to vector control to the Monitor.
Advantageous but not indispensable is a "RUN" LED (or a pair

of complementary "RUN" and "HALT" LEDs) connected via P2-28
(HALT/) .

2.3.8 Console Terminal

Any dumb CRT terminal can be used in the controller computer
which allows direct cursor x-y addressing via control sequen-
ces with a maximum length of 4 bytes. The actual control
codes are determined by a disk file which is loaded together
with RXISIS-II (RXISIS.PSC:; compare chapter 3.3.4.1.7) and
which can easily adapted to terminals with different control
codes; the system as implemented at ASU is configured for a

- 20 =

N
i
N
N 2.3 Hardware Setup
WYSE WY-50 (or a Lear Siegler ADM-5) terminal which uses the
K‘ following hexadecimal control codes or sequences:
Cursor Up: [OBH)
o Cursor Down: [OAH]
! Cursor Left: [08H]
‘ Cursor right: [OCH]
Cursor Home: {(1EH)
e Clear Entire Screen: (1AH)
- Clear line: [1BH] + [54H]
~ Absolute Cursor Positioning:
1 [1BH] + (3DH] + [1FH+<line>] + [1FH+<column>]
- (<line> and <column> are the intended line and column numbers,
% starting with 1. The control sequence for positioning the
L%

cursor at line 5, column 16 is therefore: [1BH] + [3DH] +
[24H] + [2FH].)

T¥L

Configure the CRT terminal as follows:

- Baud rate: 9600

s Parity: odd

T Data bits: 7

- Protocol: CTS/RTS
¢

; The terminal should permit to send Breaks; it must service the
CTS/RTS handshaking lines.

[}
%
” -
' 2.3.9 Printer
-5 Any printer with a line length of 132 characters can be used.
; The printer must be equipped with an RS232 interface and set
\ up as follows:
v l"
h
4 Baud rate: 9600
! Parity: none
SIS Data bits: 8
- Protocol: CTS/RTS
e It must service the CTS/RTS handshaking lines.
o

d Although a printer which can be set to 9600 baud is prefer-
Y able, any other baud rate can be used if the iSBC 517 board is
:,, set up correspondingly (compare chapter 2.3.3).

- 21 -

)
BT ’ﬁ'\\m,ﬁl"

et o 0 ORI OOOS D INONOSONA .,on.\.
g T o 1. I X UN N DN TR A R R R DN SR S
T o A NIRRT IN AN ‘ ‘I' l’.,q’.,u’.'t'. ® l‘n ‘-'c."h‘.'.‘ s ‘.' ITA el AT A DR N DN N IR A T UL RN

Y
WL

G Ay By
.-.'.':.'.'. '\'.\ LY

2ol

MY JTEARTTITT TV ATANT R T A T TLEVEILY Wi AR TESR TR TEFREEEL AV -uwT

2.4 Computer - Puller Interface

2.4 Computer - Puller Interface

This chapter is only intended to present a general overview
over the interface between the puller and the computer, as far
as 1is required for understanding the operation of the CGCS.
Detailed information about the hardware will be given in a
separate documentation.

2.4.1_ Analog Input Signals

The following analog input signals are submitted to analog-to-
digital conversion via the analog input interface circuitry:

* Three Heater Temperatures: Since the puller on which the
CGCS was implemented at ASU has only one heater, one hard-
ware interface only has been installed for the heater ther-
mocouple. The measured temperature (or, rather, thermo-
couple voltage) is routed within the Analog Data Input task
of the CGCS to all three heater temperature channels. The
input of the interface circuitry is connected directly to
the heater thermocouple. The nominal input voltage range is
0 to 30 mV, which corresponds to a temperature range of
approximately 20 to 1,500 °C (20 uv =1 °C).

* Base Temperature: This temperature is measured with a ther-
mocouple located at the center of the bottom of the cruci-
ble. The input of the interface circuitry is connected dir-
ectly to the base thermocouple. The nominal input voltage
range is 0 to 30 mV, which corresponds to a temperature
range of approximately 20 to 1,500 °C (20 uv =1 °C).

* Weight: The signal supplied by the weight gauge is pre-
processed by the standard analog circuitry of the Cambridge
Instruments puller. It is picked up from the input of the
analog Automatic Diameter Controller board. 1Its nominal
input voltage range is 0 to 8 V for 0 to 8 kg (1 V = 1 Kkg).

* Differential Weight: This input signal is obtained from
analog differentiation of the above weight signal. This
differentiation is done within the analog Cambridge Instru-
ments console by means of a dedicated board (the predecessor
of the Automatic Diameter Controller which essentially con-
tains the differentiator circuitry only). Although, on
principle, the Differential Weight signal could have been
picked up from the Automatic Diameter Controller board as
well, this solution was found to be not ideal because any
inadvertent or deliberate adjustment on the analog console
would have affected the Differential Weight signal measured

- 22 -

N P - - n TR - » MAF RIS VO Ty
o V',..r:gf > ‘ ‘ (. e O Ny a_&.-v_\\‘..(- ,_‘ g

e

Foe

X

7-11“-: 'y

2.4 Computer - Puller Interface

by the CGCS. The nominal input voltage range is 0 to 10 V
for 1 to 10 g/min (1 V = 1 g/min).

Seed Lift Speed: This signal is picked up directly at the
seed lift tachometer. Its nominal input voltage range is 0
to *90 V, corresponding to a lift speed of 0 to +250 mm/hr
(L V=2.78 mm/hr).

Crucible Lift Speed: This signal is taken from the crucible
lift tachometer. Its nominal input voltage range is 0 to
*90 V, corresponding to a lift speed of 0 to #20 mm/hr (1 V
= 0.22 mm/hr).

Seed Rotation Speed: This signal is output by the seed ro-
tation tachometer. 1Its nominal input voltage range is 0 to
$90 V, corresponding to a rotation speed of 0 to +60 rpm (1
V = 0.67 rpm).

Crucible Rotation Speed: This signal is generated by the
crucible rotation tachometer. Its nominal input voltage
range is 0 to *90 V, corresponding to a rotation speed of 0
to £66.9 rpm (1 V = 0.74 rpm).

Seed Position: The Seed Position signal is taken directly
from the position potentiometer. Its nominal input voltage
range is 0 to 6 V for a seed position range of 0 to 600 mm
(1 V= 100 mm).

Crucible Position: The Crucible Position signal is picked
up directly at the position potentiometer. Its nominal in-
put voltage range is 0 to 2 V for a crucible position range
of 0 to 200 mm (1 V = 100 mm).

Gas Pressure: This signal is output by the gas pressure
conditioning unit inside the analog Cambridge Instruments
console. Its nominal voltage range is 0 to 1.5 V, cor-

responding to a pressure range of 0 to 1,500 psi (1 mV = 1
psi).

Three Heater Powers: The Heater Power signals are taken
from the power indication output of the heater SCR con-
trollers which are part of the analog Cambridge Instruments
circuitry. Since the puller on which the CGCS was imple-
mented at ASU has only one heater, only one hardware inter-
face has been installed for the heater power. The measured
value is routed within the Analog Data Controller task of
the CGCS to all three heater power channels. The nominal
voltage range of the Heater Power signal is 0 to -5 V for a

-

power range of 0 to 60 kVA (1 V = 12 kVA).

- 23 -

TRNEFYTLEFURLALF WL W LWL Y. v " ¥ _®_%" 5 % & & ¥ % ¥+ = % % % @ ‘T

T
3
?2;

.‘:.:
~§? 2.4 Computer - Puller Interface
‘?ﬁ * Contact Device: This signal is supplied by the pertinent

hardware of the Cambridge Instruments analog console. Its

o7 nominal range is 0 to 1 mV, corresponding to a reading on

= the analog contact device meter of the Cambridge console of

i 0 to 100 units.

.

W Each of the above 17 channels (only 13 of which are currently
\ implemented at the ASU puller) is measured via an interface
P schematically outlined in Fig. 5:

"7
e
N BUFFER

- ISOLATION
L FROM AMPLIFIER
,rf PULLER AMPLIFIER
. "L ['LOWPASS | LOWPASS
e > FILTER #1 o | FILTER #2
N -

[¥ : i
:P; GAIN $l j;

o T
A =m GAIN
NN OFFSET

= :

*
> a e e - e e e
{ |
2 CTAD L -215. 4215 [SOFTWARE| GROWTH
o ——f CONVERTERf—---=========~=---- < LOWPASS L-——--- » CONTROLLER
I o ; 1 FILTER | ROUTINES j
-’- ‘ —_— [, - ,

- ~ CONTROLLER COMPUTER |
t'; Fig. 5: Analog input interface.

')
"‘ Two generic types of interface boards were developed, one, for

v the thermocouple signals, and one, for all other sources.
%: (Eight spare channels which were provided for various experi-

- mental measurements can be equipped either with a thermocou-
b’ ple, or with a general purpose amplifier.)

('

- The signal generated by the puller is submitted to an isola-
.sj tion amplifier via an input voltage divider which permits a
.:J vernier gain adjustment, and reduces the high-voltage input
,ﬁ signals from the tachometers to the range of *10 V permitted
oy by the isolation amplifiers. A low-pass filter blocks pos-
'y sible r.f. noise which might cause interferences in the isola-
'\:i' - 24 -

o,

20
l"

o
-

o
o

&

'(o T T e e PR M W) L) PAP MY » » L] LY Y ’

P "' R G ey 'o"o.lﬁ."o. Wl ..l,.n. o oA T I e Tt L e BRINCHDS

- xS

[l Rl

so0
e

-

....--.
PRV P R RS

<

Ve

2.4 Computer - Puller Interface

tion amplifiers. (No vernier gain adjustment was provided for
the thermocouple amplifiers.) The isolation amplifier pre-
vents ground loops and the interferences which are usually
caused by them, and it provides an easy way of inverting the
polarity of signals like the heater power voltage. 1Its gain
is set such that the voltage at the output of the isolation
amplifier is in the range of -10 V to +10 V. This output
signal is submitted to a second low-pass filter with a cutoff
frequency in the order of 0.1 Hz; this filter is required for
eliminating components with a frequency greater than half the

sampling frequency (1 Hz) which might cause aliasing other-
wise.

The conditioned signals from all analog input channels are
submitted to a 32 channel, 16 bit A/D converter which is phys-
ically part of the controller computer. The A/D converter is
configured to transform analog signals in the range -10 V ...
+10 V to signed integers between -32,768 and +32,767. The A/D
converter operates under the control of the CGCS software; it
is programmed to read each active input channel once per sec-
ond in a random access mode. The relation between the physi-
cal input channels of the A/D converter and the logical data
used by the CGCS software is determined by a software-based
table which links each element in an input data array to one
hardware channel of the A/D converter. This table, and even
its size, can be modified easily, even while the CGCS is run-
ning, which permits an extremely flexible operation if hard-
ware channels have to be activated or de-activated temporarily
for some experiments.

Before the data read from the A/D converter are made available
to other tasks within the CGCS, they are submitted to digital
low-pass filtering. In contrast to the hardware filter cir-
cuitry, the software filter routines can be re-programmed eas-
ily; this filtering further reduces random noise and spikes.
This is particularly important if not each measured input
value 1is actually used by the CGCS algorithms, which applies,
for example, to all input data required for the diameter eval-
uation. The low-pass filters provide in this case a weighted
average over the recently measured data, rather than the plain
(and possibly noisy) measured values.

- 25 -

(4

'l
s, v

ol

Qo

AR

fﬁy 2.4 Computer - Puller Interface
fﬂ 2.4.2 Analog Output Signals

The following signals have to be supplied to the puller by the
digital controller:

* Three Heater Power Setpoints: These output signals replace
the output of the analog temperature controllers within the
analog console; they are connected directly to the inputs of
the heater SCR controllers. Only one Heater Power Setpoint
channel is currently used in the single-heater system at
ASU. The voltage range required is 0 to 5 V, corresponding
to 0 to 100 percent heater power.

* Four Motor Speed Setpoints: These signals replace the set-
point voltages of the analog controller for the seed and
crucible 1lift and rotation speeds. Their required voltage
range is 0 to 10 V for the rotation speeds, and 0 to 5 V for
the lift speeds.

The analog output circuitry is schematically shown in Fig. 6.

GAOWTH
CONTROLLER g [T . 12
ROUTINES _-2'5... +2% 'sigNaL 1 0...+2"2 Ip/A 0... +10V:
"""""" POTTTTTTTTTTTTTTY CONDITON, 77T TTTTTTTT T CONVERTER ;
e e !
ISIGN _|DIGITAL
' PROCESS. ™77 OUTPUT
e — e i

CCNTROLLER COMPUTER

VOLTAGE ANALOG MOTOR CONTROLLERS
: / CHART RECORDER

‘ CRELAYS |
——— oo, ———— MOTOR DIRECTION RELAYS

Fig. 6: Analog output interface.

- 26 -

Y YRR
EL‘GQQﬂﬂﬁ'

......

o,

S 4
oot
[W

PP T Ty N ,"'""'}""I'J’I' X
G I RO RN A Bkl

1

Mot Ami Aa: a Ad Ak i aoe Al 2 Jien hac he- e e gac o va‘w AR ™

LA
&,
.)1

[.
Ay
N

Pl
T Y
LA LA

[N

. 2.4 Computer - Puller Interface

7z
P

“L %A

The 12-bit D/A converter used was set to unipolar output since
u only positive voltages are required by the puller. Digital
- data supplied to it by the Analog Data Controller task have
therefore to be converted to their absolute values, and scaled
o to a 12-bit range (0 to 4095). While the heater powers are
YENING intrinsically positive data, this does not apply to the motor
N speed setpoints whose signs determine the direction of the
' movement (up/down or clockwise/counterclockwise). The signal
. conditioning routine strips therefore the signs off the motor
- speed setpoints, and supplies them to a digital output routine
which activates the relays which control the motor directions
- accordingly. (It should be noted that the measured motor
o~ speed data are bipolar, while the pertinent setpoints must be
unipolar.)

NN .'.-‘..-5 £

g;f e The output signals generated by the D/A converter are connect-
D': T ed to the corresponding inputs of the puller either directly,
oo or via simple voltage dividers. It was not found necessary to

install isolation amplifiers for the output signals, firstly,
because their voltage levels are relatively high, and second-
ly, because they are in a less sensitive part of the control

jOLﬁ.

¢'..'
B
LN

232 s loops.
AT
3;4 - Eight channels of the D/A converter are hooked up to a chart
q:j recorder; no special interface is required for them either.
at d The signals supplied to the chart recorder are set to their
. absolute values by the CGCS software; a message is issued at
;bﬁ the CGCS consocle if a parameter which is being routed to the
L - analog output changed its sign.
‘: - \:
) " 3
AT
sy
o [2.4.3 Digital Input and output
SN
;jj The sole application of digital input signals is monitoring of
.33 35 the status of the motor direction control relays inside the
> Cambridge Instruments analog console. These relays are con-
AL trolled by switches on the analog console if the analog con-
" - troller is in charge, or, otherwise, by digital output gener-
i & ated by the CGCS. Since one of the constraints of the CGCS
y&ﬁ - was that a "bumpless" transition between the analog and the
S digital controllers should be possible under all circumstan-
,w“ W ces, it was necessary to monitor this relays status continu-
W K ously. This information is used to preset the motor speed
- @, s setpoints when the CGCS gains control:; the digital controller
oA provides output signals for the motor control relays which
:nj ~ replace the ones derived from the front panel switches on the
R M analog console.
L
e
-fl f-'
ﬁf: - 27 -
'y I
n‘ gf
y S \-".

Y . . - » » n~ - < - " A .
S T B e S e R A S

(S L. i MY

M A% Bla A e fles - 6 B T e E e e e i e e e

T
-, ﬂ }

el

A |

RATAFATA

2.4 Computer - Puller Interface

Status input and control output is mapped to two lines for
each motor, which corresponds to one input and one output
byte, respectively. One additional digital output line con-
trols a changeover relay which allows to use control input
from the analog console if it is de-activated, and from the
digital controller if it is energized.

The digital outputs are routed to relays on a digital inter-
face board which generate the actual control signals for the
Cambridge Instruments circuitry, and which provide full isola-
tion between the 5 V logical level within the controller com-
puter, and the 28 V rectified a.c. voltage used by the Cam-
bridge console for relays control. Similarly, the relays sta-
tus of the Cambridge console is converted into signals suit-
able for digital processing by a number of relays on the digi-
tal interface board.

- 28 -

3.1 Design Considerations for a Real-Time Operating System

3. System Software on the CGCS Computer

3.1 Design Considerations for a Real-Time Operating System
3.1.1 Intel's iRMX-80 and FORTRAN

From the software point of view, there are various approaches
for designing real-time process controllers: The most sim-
plistic one is writing a dedicated program which has to com-
prise all auxiliary functions like console and data I/0, and
which 1is able to react properly to asynchronous external
events (like an operator command, or a machine status change)
by the use of hardware interrupts, or by means of software

polling loops. For a more complex environment or process to
be controlled, however, this approach is hardly feasible any
more. The programmer is not only overburdened with all the

auxiliary and housekeeping functions whose number and com-
plexity increase dramatically as the complexity of the system
operations grows; the controller software proper also tends to
get out of hand and become confused due to the lack of modu-
larity which is frequently found with such systems.

A considerable improvement of the readability and serviceabil-
ity of a process controller or any other real-time computer
application can be achieved by using a special real-time oper-
ating system. An operating system off-loads the programmer
from chores like providing software drivers for peripheral
devices; it usually hides the genuine constraints of real-time
operations from the programmer, permitting him to concentrate
on a functional rather than chronological approach for the
layout of the controller software. Breaking down the opera-
tion of a system into a number of more or less autonomous
"tasks" is a first step towards modular programming; since
tasks can be coded rather independently (even by different
programmers), program development is facilitated, and correc-
tions of errors or software modifications become easier.

For the 8-bit, 8080/85-based, hardware chosen, a real-time
operating system has been distributed by Intel Corporation
under the name "iRMX-80" (Intel's Real-Time Multitasking
Executive for 8080 or 8085 processors). Although already
obsolete when finally applied for the design of the CGCS,
iRMX-80 provides absolutely sufficient support for an applica-
tion like the Czochralski controller, at least, with a number
of specially written enhancements.

The development of software for an 8-bit environment was
always somewhat impeded and limited by the restricted availa-
bility of programming languages. Intel supported - at least at
the time when the CGCS and its supporting software were de-

- 29 -

W\E “:-s.."r-pﬂ’:& :ﬁ- :& W _":‘ RSN Ay

3.1 Design Considerations for a Real-Time Operating System

w signed - only three high-level languages in addition to as-
sembly language, namely, BASIC, PLM-80, and FORTRAN.

B As an interpreter-based language, BASIC had to be ruled out

y immediately for an implementation of a more complex system
b like the CGCS since it could not be combined reasonably with
o the functions of iRMX-80 to constitute a genuine real-time
system. There is an iRMX-80 based version of BASIC which
N does, however, not allow to break down a complex system into a
- number of BASIC coded tasks; its interface to modules program-
- med in different languages is more than awkward. The size of
~ the BASIC interpreter and, even more, its insufficient speed
N virtually prohibit its use for any serious application. BASIC
is a valuable tool, though, for the setup and testing of
various I/0 interfaces, and for the fast development of small
auxiliary programs; two BASIC versions were therefore prepared
to be run on the CGCS computer.

- .
B .

« r
* /1l¢ P

“r'v‘a"i R

S
LA

PLM-80 (a dialect of PL-I for the microprocessor environment)
was used and recommended by Intel as an implementation lan-
guage for iRMX-80; accordingly, the interfaces to the iRMX-80
system routines were designed for a call by PLM-80 coded mod-
ules. PLM-80 has a major drawback, though: Its numeric
routines support only integer variables in the range of
-32,768 to 32,767; the floating-point operations which were,
in fact, found to be required for most of the CGCS modules
would have to be coded with awkward calls to routines of a
floating-point library.

|
b

" .
[}

A"
AR 'j'.' @

a
s

%

»

kA,
Pb
havh

LAy

FORTRAN-80 (Intel's implementation of FORTRAN 77), finally,
was the only language supplied for the 8-bit environment which
provides floating-point operations as a standard. FORTRAN was
therefore the obvious choice for at least those routines of

"
=~y

OF

jh* the CGCS which use floating-point variables. Although the
S program development environment provided by Intel would have
-2{ permitted to freely combine modules coded in FORTRAN-80, in
R PLM-80, and in assembly 1language, it was not considered wise
A4S to use both high-level languages: Either of them requires a
!‘ separate set of supporting library routines (although FORTRAN-
v?{ 80 shares some of the PLM-80 libraries), which would have
Na& increased the total size of the program code unduly. Since
D, the capabilities of PIM-80 are essentially a subset of those
B o = . N
;&} supported by FORTRAN, FORTRAN-80 was chosen as the basic im-

' plementation language of the CGCS.
'Vf_ Unfortunately, FORTRAN-80 uses a parameter passing convention
\iﬂ which is, in general, not compatible with PLM-80 and, hence,
:?3 iRMX-80; interface routines had therefore to be provided which
:Q} permit to call iRMX-80 system routines from FORTRAN. These
Ta routines were generally written in assembly language with
0.

e T
EY '-\' '.
T
A
! .-}.

‘s l.

e

NS

T A
A

TN L i At i A S A AN RS St St S aid ath oAl uid oAh QAR oAl 48 At gl b v - W "f"'?"f'.?'r"]w.".""""'."w

L]
"
.

.. 'll
e k .
R .
. PPN
.

3.1 Design Considerations for a Real-Time Operating System

Sl regard to speed and code size. Furthermore, the standard
FORTRAN-80 I/O routines turned out to be practically unusable
for the application in mind: FORTRAN I/0O 1s extremely slow
and requires an excessive amount of program code and stack
- resources. In addition, it does not reasonably support the
R generation of a fixed console screen mask which was found
' indispensable for the continuous display of a large number of
- measured values. These considerations led to the development
- of dedicated routines for console, printer, and disk I/0 which
. require only a fraction of the system resources needed by the
corresponding FORTRAN-80 routines. These I/0 routines were
coded in assembly language as well in order to guarantee a
sufficient performance. The obvious penalty of using special
I/0 routines was, however, that the resulting code can hardly
,. be regarded as standard FORTRAN.

<

R
) i

A A

NI,

. -
. S
y
¢

LR &

LY o
= ." L 4
'] 'l f .‘ "'I ,.l".,
St

.
F e}

“
o,
[

A further enhancement was provided by replacing the standard
software-based floating-point libraries of FORTRAN-80 by
v specially written interface routines which use the numeric
o processor hardware, i.e., the 8231 Arithmetic Processing Unit
chip on the iSBX-331 expansion board. With a small deteriora-
tion of the achievable accuracy, these routines increase the
execution speed of floating-point operations by about one
order of magnitude, and simultaneocusly decrease the size of
the required floating-point program code to about 50 percent.

o -

-

v

TS

T @

v
v
[
A

i Within this chapter, the general rules for coding FORTRAN
D tasks in an iRMX-80 environment shall be reviewed. The dis-
A cussion comprises the following points of view:

.x;' * The structure of a task in a FORTRAN-iRMX-80 environment.

\
Ry

* Sharing of common code sequences between several tasks.

g% ot
o * Data transfer between tasks.
N o
'fifg * Generation of RMX control structures in a FORTRAN based
i ¥ system.
e
=.§ ~ * Input and output of data in a real-time environment.
Y
:}: For basic information about iRMX-80 and FORTRAN-80, the reader
PN should refer to the pertinent documentation supplied by Intel
0 T Corporation.
Q.
eI
AN
M, L
‘--J ""l
-:.’
4
N
s
e,
Syt - 31 -
Il
LN
R
,l4 -
L
PO
v
‘:‘{'l‘zf . I N R o - \\\ -'-\' T, 0w LN ,‘ ‘-{'.\’\'\f'.‘_\\,\}\,
NN Yy “ Rl R T e S T LA o
'..\‘:‘n{\': l’-l =" -\‘Xh'l:’m\’-\':ﬁi"".. :’?‘-&‘:‘f....._-\-’ﬂ.’_. ‘.‘.T'.A.hlf_nﬁ'..} :}A\.A A M:‘A? A&*‘M}MEA& A NPT \

H 3 3
el :')‘-J‘.J

v .

SN

Y
\"'\ "vl
LY

1

A
s

M
N
Qg

LN NN AT,
LA SN B B

DA
L

S 1S 8]
AR

3.1 Design Considerations for a Real-Time Operating System

3.1.2 The Structure of a Task in _a FORTRAN-iRMX-80 Environ-
ment

No user-supplied main programs are permitted in an iRMX-80 en-
vironment. The attempt to execute a main program under iRMX-
80 will result in a disastrous system error. The main routine
of each task must therefore be coded as a subroutine in FOR-
TRAN; its general structure comprises an initialization se-
quence which is executed only once when the task starts run-
ning the first time, and an endless loop. There must not be
any exit from this loop, particularly not via a "RETURN"
statement, except if a task suspends or deletes itself. The
subroutine forming the main body of the task may in turn call
other subroutine or function subprograms; special care must be
taken, though, if a routine may be used by more than one task.

The task initialization sequence depends on which operations
are to be performed by the task. It must contain a call to
the routine FQFSET if the task uses any floating-point opera-
tions or intrinsic functions, a call to the routine FXIOST
(compare chapter 4.2.2.1) if the routine performs any I/0
operations via the special routines rather than via FORTRAN
"READ" or "WRITE" commands, and a call to FRINIT (compare
chapter 4.2.1.2) for each message - response exchange com-
bination which is permanently allocated to the task. Further-
more, all other exchanges including interrupt and "flag inter-
rupt" (a special enhancement added to iRMX-80, compare chapter
4.2.1.4) exchanges which should be built by the task must be
created during this initialization sequence. A FORTRAN task
which uses the first three functions may therefore have the
following structure:

SUBROUTINE MYTASK
INTEGER*1 MYEXCH(19), IOEXCH(31)
COMMON /MYTSK1/ MYEXCH,X,Y,Z,A,B
(The named COMMON block comprises 19 bytes
reserved for an exchange-message combination,
and 5 REAL variables with 4 bytes each.)
CALL FQFSET (0,0)
(Compare FORTRAN-80 Compiler Operator's Manual)
CALL FXIOST (IOEXCH)
(This subroutine call initializes the I/O
structures; compare chapter 4.2.2.1)
CALL FRINIT (MYEXCH,20,199)
(This statement has the effect that the next 20
bytes following MYEXCH are incorporated in
a message with TYPE 199; compare chapter 4.2.1.2)

Qo

oraonon0 oo 0

(The main task code follows here)
GOTO 100

- 32 -

ﬁ A Sl % ML S Y A S S S S T O Y S EAL S S IR A T LT W LR S S T S LG) LI) -
W T S A L \\f'\._’,\.y\lx.,,_.)\r\ s -'-),'\J,-\._f'._p."\'_-.,\’\ '\‘,,5.),.).\',\ ".1-“.,-‘\;‘ n ' .f-\.'\
R AN e o AL Ao D A L o N Al L (8 i AP S i Mot 2

8, - N FTTRAARITEYTETTW Y Y TR T TTF ITE T U RN VN T WY EFY VY YTEFTETETE ORI ULETUN TR TV TV YW R W r\.‘r..'T

3.1 Design Considerations for a Real-Time Operating System

‘- (3.1.3 sSharing of Common Code Sequences Between Several Tasks
(

Coding in a real-time environment differs significantly from
the straightforward approach which is possible with batch
execution. In general, there is no possibility to predict
which task will run at which time or will be going to access
data or shared software resources. The basic philosophy of
J iRMX-80 is that separate resources are allocated to each task,
T in particular, a separate stack. Whenever a task is inter-
4o rupted or waiting at an exchange its current status (i.e., the
[status of the processor's hardware registers) is saved on the
S task's stack. Therefore, data is automatically protected if
VI it is kept on the stack or within memory locations which are

local to the task (which means that they cannot be accessed by
-~ any other task). A variable which is not kept in a COMMON
- block is intrinsically local to a FORTRAN routine.

e

This protection does not hold, however, if a subprogram is
shared by several tasks and if this routine uses locations in
- read-write memory for intermediate data storage. If a task
has been interrupted while executing such a common routine it
will resume execution exactly at the point where it was inter-
rupted when it becomes ready again; still, the local data
within the common routine may have been changed meanwhile by
SO another task which used the same routine. There are several
’ possibilities to avoid such unpredictable occurrences: The
common routine may be linked separately to each task which
uses it, it may be compiled with the "REENTRANT" compiler
. option, it may disable interrupts during critical operations,
- or a software lock may be applied to it.

&4 &
.

s t a Aam

',. l\: l{‘

—
N-

The first approach may appear to be the easiest one, still, it

. expands the memory requirements for the code significantly,

- particularly if the routine is rather lengthy (and even rela-

. tively simple FORTRAN routines turn out to require plenty of
. code when they are compiled).

The second approach permits the mutual use of a routine by
s several tasks as data is allocated on the task's stack rather
K than in absolute memory locations if reentrancy was specified.
vl Still, this method extends the stack requirements of each task
G which calls the common routine; stack requirements are already
) ﬁ rather high anyhow in a FORTRAN environment. In general, the
v FORTRAN library routines, e.g., for floating point arithmetics
¢ and intrinsic functions, are reentrant, and so are most of the
iRMX-80 modules. Storing local data on the tasks' stacks,
- they add significantly to the stack requirements. The stan-

dard FORTRAN-80 I/O routines, for example, require an addi-
- tional stack of 800 bytes for each task which performs I/O.
N Besides allocating data on the tasks' stacks, the FORTRAN-80

-
o
7
s
'C4

Y
.
]

- 33 -

\
K e N AR S S IR A "v\‘,\ (™ O LA % W A YY W L A LA R RL YR ST
b R , L0l &) .‘ WS :'..h hat e l"‘k\‘hk‘ X J,:‘.l.a SO W, L A

OO OO0) AR SON

.
P

s

@ !
»

2

‘: .&l

3.1 Design Considerations for a Real-Time Operating System

s
-
- s

:& floating-point routines use locations in read-write memory
which are intrinsically private to each task because they are
located within an extension of its task descriptor. (A simi-
lar approach is also applied by the specially written I/O rou-

_ tines; compare chapter 4.2.2.)

L - Routine protection by disabling all interrupts of the system

) constitutes the least code and execution time consuming pro-

' tection approach. A routine which is protected in this way

~" can never be interrupted since external events (including

‘:3 system clock ticks) simply cannot be recognized by the operat-

o~ ing system nucleus (which is in charge of the interrupt han-

. dling); no other task can become active therefore while inter-

) rupts are disabled, no matter what its priority is. However,

w this protection technique cannot be used for lengthier code

o sequences because it would unduly deteriorate the reaction of

xj the system to external events, and it cannot be used on prin-

™~ ciple if the protected code tries to invoke operating system

é functions. Its application is therefore limited to suffi-
the high-speed floating-point routines for the numeric proces-

?: ciently fast processes which do not require iRMX-80 routines;

0 sor (compare chapter 4.2.5) were designed to use protection by

X interrupt disabling.

lj The last method of protecting a common routine, namely, by
‘ means of software interlocks, imposes a slightly increased

execution time overhead; it may also affect the order of exe-

s cution c¢f the tasks. The software interlock makes any task
e wait at an exchange immediately at the beginning of the common
" routine if the routine is being used by another task. No
} matter what its priority is, the task has to wait until the
' execution of the protected sequence by the currently running

task is terminated. When leaving the common routine, the cur-
rently executing task sends a message to the entry exchange

-~ which permits the first task which waits there to become ready
.:- and to resume execution if no task with a higher priority is

.Q ready. Such a software interlock can be easily accomplished

’j by calling the subroutine FRACCS (compare chapter 4.2.1.5)
® prior to entering the protected sequence (i.e., prior to the
N subroutine or function call which accesses the common code),
N with an exchange exclusively used for the protection of the
) particular common code sequence as a parameter. The next
{ statement after the call to the shared routine must be a call
he for the subroutine FRRELS, specifying the same control ex-
) change, which releases the software interlock.

.i In order to compare these approaches, consider the following
A situation: a low-priority task is just executing a routine

b shared by other tasks when a high-priority interrupt handling

' task becomes ready which will eventually access the same
®

‘.g - 34 -

¥

N

o~

‘P

L

o

:-

s S ol R R R ST e S e TR

,
b A

A
ﬁ o 3.1 Design Considerations for a Real-Time Operating System

L common routine. In the case of separate copies of this rou-
{ g tine for both tasks, the interrupt routine will run regqularly,
w. without any additional delay or overhead. The same applies if
~ reentrancy was specified for the shared code; the parameters
- of the low-priority task are saved on its stack, and the
. resources of the common routine can be fully utilized by the
. high-priority task. The high-priority task will never become

ready if interrupts were disabled by the common routine, but a
g second interrupt may be missed if it happens before the pro-
O tected routine re-enables the interrupt system. 1In the case
- of a software interlock, the interrupt handling task finds
SRS itself waiting at an exchange where there is no message avail-
¢ able; it is therefore removed from the ready list, and the

task with the highest priority which is ready becomes the
" running task. This task may or may not be the task which is
-, blocking the common routine. Anyhow, the interrupt routine
: has to wait until the low-priority task has terminated its

execution within the shared code sequence and has sent a
- message to the exchange guarding the entry point of this code.
Oonly then, the interrupt task will be returned to the ready
list and probably become the running task. The unpredictable
delay imposed upon the interrupt task may, however, have
caused the missing of an interrupt. The use of software in-
terlocks should therefore be considered very carefully, and
they should generally not be used in conjunction with inter-
rupt handling tasks or with tasks with a very critical timing.
_ (As a matter of fact, this does not only apply to the explicit

('}

-

AP A

2
Y,

- g
’
L] .

: use of software interlocks. Some routines, for example the
. special I/O routines of chapter 4.4.2, may also impose an un-
s due delay on a task with critical timing.)

- o > o
>

g ! 3.1.4

A Data Transfer Between Tasks
e
Qfg Similar considerations apply to the exchange of data between
T tasks. There are two main ways for passing data: first,
memory locations may be used for data storage which can be
_! - accessed by several tasks. In FORTRAN which does not support
3 Y the "PUBLIC" scope of labels and variables, the only way to do
~ 7 so is using a (named) "COMMON" block. The second possibility
- for performing transfer of data is to send it to another task,
&IRN formatted as a message.
AR
- 4 Both approaches have advantages and disadvantages: Data
D -, transfer via a "COMMON" block must be protected by a software
o interlock; some of the approaches - interrupt disabling or a
S software interlock - which can be used for protecting common
,: code sequences can be applied for this purpose as well. This
»;yi protection is indispensable because you never can predict the
b
o - 35 -
.
» .\:
7t
¢y
S

. - w Sw ™o LI T L) “am LTSS »
R S T N A £ P OISR R 1

3.1 Design Considerations for a Real-Time Operating System

occurrence of an interrupt. It might happen just when a task
is reading a multi-byte variable in a "COMMON" block, and it
might trigger the execution of another task which accesses the
same data area. The interrupting task may or may not change
the variable which was just being read by the interrupted
task. Wnen the interrupted task resumes its execution, the
second part of the variable it is reading may significantly
differ from its previous value although the variable itselr
was only slightly changed. (For example, a two-byte integer
may have held 256 (0100H); its value is to be changed by an
interrupt triggered task to, say, 255 (00FFH). The interrupt
might happen between the reading of the low byte (which is
still at OOH) and the high byte (which is set from 01H to 0OH
by the interrupting routine). The interrupted routine will
therefore read a value of zero (0000H) instead of the correct
values 256 or 255 which it would have read had the interrupt
occurred a few microseconds earlier or later.) Still, the
same considerations concerning the detaining of high-priority
routines apply as for the protection of shared code by a soft-
ware interlock.

A software interlock is not necessary for passing data through
COMMON blocks or other shared data structures in read-write
memory, though, if a proper operation can be guaranteed by
prudent choice of the priorities of the routines involved: 1If
data 1is to be written by the task with the lowest priority
only (at least, with the lowest priority among the tasks which
access the data), this task can never interrupt any other task
because its priority is too low. Updating of a data location
can therefore never interrupt any read access to the same
location. The low-priority task writing the data ought to
disable interrupts during its writing operation, though, to
protect itself from being interrupted during this critical
operation. Since writing two or four bytes requires only a
matter of microseconds, the delay imposed on the interrupt
response is negligible which is introduced by disabling the
interrupts. This approach is used within the CGCS for updat-
ing arbitrary memory locations addressed by symbolic names
("Variables"); no other protection method was feasible for
this purpose without unduly restricting the range of access-
ible memory locations.

Although sending a message implies a significantly higher
software overhead, it appears to be the safer way, particular-
ly for interrupt service routines, and it is therefore the
only genuine iRMX-80 data passing technique. The major disad-
vantage of the message approach is, however, that data can be
sent to only one other task; in contrast, the use of "COMMON"
blocks permits access to the data by an unlimited number of
tasks.

- 36 -

. .
K '-".‘%J v

PN A mv g y «
wg‘-';‘.ff'."\:\j@h."‘ jt

|

| oade wat wpd i tal R Wl Bd Mg ed and G s B8 BR Sa A sl Bl At A e S B AUS Ad At Snik nf Sad Sk i eflAnl Al) ‘-"""1“'r1

L4

b
\

¥
Tq
"

3.1 Design Considerations for a Real-Time Operating System

There is an important exception to the need of data access
protection in a real-time environment: Single bytes can be
freely written or read without any further software overhead.
This is true because the current operation is always termin-
ated by the hardware before an interrupt is acknowledged and
serviced. Single bytes will therefore always hold a correct
(but possibly slightly obsolete) value. This applies in
particular to Boolean variables (flags) which can therefore
<BS even be used for a software "interrupt" (compare chapter
. - 4.2.1.4). (Incidentally, word type variables (e.g., two-byte
i integers) may also be transferred without protection if they
- are always referred to by their absolute addresses, and if no
e address calculation is involved. These variables are, in
general, also moved with one machine code instruction only.
These considerations apply in FORTRAN to simple INTEGER*2

.',;"

:Cj variables, and to elements of INTEGER*2 arrays which are
N referred to by explicitly coded subscripts. J(3) and N do not
5 need protection therefore if J and N are of type INTEGER*2;
T however, J(N) does since array elements whose subscripts have |
‘f’ to be calculated at execution time are transferred by FORTRAN- }

80 in a byte~-by-byte mode.)

AEPARNPSERENES
.

—
L~

3.1.5 Generation of Control Structures in a FORTRAN-based
iRMX-80 System

The peculiar properties of FORTRAN, particularly the limited
scope of variable names, require some special approaches for
the generation of and the access to iRMX-80 control structures
by FORTRAN routines. Some of these structures have to be sup-
b plied by dedicated PL/M or assembly language modules in any

2AA

LR AR A A S
LAy

case.
- \hi

v

- 3.1.5.1 Static Task Descriptors and Task Descriptors

o

)) The most straightforward approach for generating these struc-
S tures is including them into the configuration module. This
T module must either be coded in PL/M or in assembly language,
- or it can be interactively created by means of Intel's Inter-
N active Configurator Utility (ICU-80). Still, it should be
Ry noted that the ICU-80 software is only capable of creating
| Static Task Descriptors kept in the configuration module: it
- is indispensable to use dedicated assembly language or PL/M
: code for creating Static Task Descriptors if they are, e.g.,
’: to be loaded from disk at execution time. (Special interface
. routines have been written, though, which permit to use an
o, .

\.;.
b - 37 -

N

Y.

]

' "*l L] LS v-r-*vvy - n;- 'f-f-i'.f. -¢- PR
:'t .'v,'.h".h k .!l B v o. .. ,l.l “o W

K i

,,,,,,, . -, . P
‘. ..o‘lft“v'.'~!. .. l.‘t

2% a0 3% &7 a0 L) o A)

o
SRAPAY Y M ar R R R

Pzt
AAD

o N e

=5 Shihall A

VLY B &t s

o @ R A KA

3.1 Design Considerations for a Real-Time Operating System

ICU-80 generated Configuration Module within an iRMX-80 system
overlay; compare chapter 3.4.5).

Additional care is required when the Static Task Descriptors
of a FORTRAN-iRMX-80 system are defined: FORTRAN requires an
extension of the Task Descriptor where it can place its float-
ing-point registers. (This approach provides individual
floating-point registers for each task. Although the FORTRAN
floating-point routines require such locations in conventional
data memory they can therefore be considered reentrant.) The
length of this extension depends on the type of floating-point
arithmetic used: 18 extra bytes have to be reserved if soft-
ware floating-point routines or the special routines for the
8231 Arithmetic Processor Unit are used, 13 bytes, if the
system contains an iSBC 310 High Speed Mathematics unit and
the corresponding FORTRAN libraries are included.

Two more bytes in the Task Descriptor extension area are
needed if the task performs I/O via the special routines
mentioned above. These extra bytes have also to be declared
in the "EXTRA" line of the Static Task Descriptor building
program sequence if the Interactive Configurator Utility is
used to create these control structures.

3.1.5.2_ Exchange Descriptors

Exchanges may be generated at any time by a FORTRAN task with
a call to the interface routine FRCXCH (compare chapter
4.2.1.3). A sufficient area in read-write memory is required
where FRCXCH can build an exchange, i.e., ten contiguous
bytes. The way how to supply this memory area depends on the
intended scope of the exchange: an exchange which is to be
used within the task only, e.g., for a timed wait in a timer
task, or for task suspending, may be specified by the follow-
ing statements:

INTEGER*1 EXCH(10)
CALL FRCXCH (EXCH)

100 .

c (Infinite loop of the routine)
GOTO 100

In this case, the scope of the exchange EXCH is limited to the
subroutine where it was defined. If this routine calls other
subroutines, it has to pass EXCH as a parameter in order to
permit access to the exchange built at this memory location.
Still, some types of exchanges do not require a global scope
altogether although they are accessed by other tasks. This

- 38 -

\“‘- “w e Y S TS Y e Y

«'.f\f\'t‘.-f " J' Ry

e e T T NN A o s OIS S A T SN

A
"IT
E‘: "
yille)
Q!
ooy |
. :".1
\-3 3.1 Design Considerations for a Real-Time Operating System
N
K applies in particular to response exchanges, used in conjunc-
g tion with FRSEND (compare chapter 4.2.1.2), and to "flag
-y ° interrupt" exchanges generated with a FXCRFE call (compare
b chapter 4.2.1.4). The information about these exchanges is
Ky o transferred by a message to the tasks which are supposed to
v:-; send messages to them.
K
v m The probably more common use of an exchange is its application
g o for data or control transfer between different tasks. Such an
| " exchange can no more be built in normal data storage locations
=: as there is no way to let other tasks know about its position.
~ E} The only possibility for creating such exchanges is to build
B M them in memory allocated to a (named or unnamed) "COMMON"
block. Exchange-message combinations which control the access
w BN to data within a "COMMON" block may (but need not) be created
AN within this "COMMON" block, for example in its first loca-
. tions. Other exchanges may be contained within one or more
A specialized "COMMON" blocks (which need not be protected by a
4 Q software interlock as they are only accessed by iRMX-80 rou-
] ¢ tines). The declaration sequence of a task routine using such
+ exchanges might be:
3 INTEGER*1 EXCH1(10) ,EXCH2(10) ,EXCH3(10)
- COMMON /EXCH/ EXCH1l, EXCH2, EXCH3
'; ﬁ Note: An exchange must be created once and only once during
ol program execution. Creating an exchange twice may cause a
K disastrous system error if tasks are already waiting at the
A exchange. Particularly exchanges located in "COMMON" blocks
! Q& must be treated very carefully: they must have been initial-
! ’ ized when the first message is sent to them or when a task
N wants to wait there for a message, but only one task can be
. ' responsible for creating them. The safest way to build ex-
Mn changes properly is either to specify them in the configura-
A tion module, or to let them be created by a dedicated initi-
RN alization task or subroutine which should have a sufficiently
b high priority to run before any other task which might use the
20 exchanges, or before other tasks have been created altogether;
: . the latter approach is used in the CGCS.
J
f:':' & In order to avoid a lengthy and complex configuration module
‘" or common initialization routine, only these exchanges should
oA 5, be created beforehand which might be accessed by more than one
b task. An exchange which is used by one task only might as
well be created by this task, during its initialization se-
" - qguence. This approach can help to improve the clearness of
> ¥ the software structure.
‘
(3" Y
LA
¢
4 - 39 -
N ”
.
-
e
’ haal
‘-

g, MG e e R AR AT Qe

)

b 220 5t
-Y‘IS.I.'
LS

P

A 1{‘.‘5-:‘ ~ 3

ia n.'fn.‘.\ (LY

4

Ao

\ A

.
ah
e

'

Lt o |
x

LRI
-.4 'l¢ .,l "l "

LY

e L.

Ry P
iy ® }‘-

5 %
> -:.#-‘;’

» LR a €

tan

AR
'

)

o

'QW&

3.1 Design Considerations for a Real-Time Operating System

3.1.5.3 Messages

The structure of a message within an iRMX-80 system depends
essentially on its particular purpose: Some messages are only
required in order to trigger the execution of a task (e.g.,
the interrupt messages), some of them are used to transfer
data. Some messages should be sent back to the transmitting
task to acknowledge their receipt or to indicate the termina-
tion of some kind of processing. This multitude of different
task structures was probably the reason why there is no mes-
sage-creating iRMX-80 routine. Creating a message in FORTRAN,
however, may come close to impossible if the message should
not only contain data but also addresses. The process of
building messages was therefore incorporated into special mes-
sage sending and receiving routines (compare chapters 4.2.1.1
and 4.2.1.2); the only prerequisite of these routines is that
data which are to be transmitted with the message must be kept
in contiguous memory locations.

This can be accomplished in two ways: either can the data be
located in a COMMON block, in which case the sequence of vari-
able names in the COMMON statement defines the sequence of
storage locations in memory; or variables may be defined lo-
cally and forced into a certain order by means of an EQUIVA-
LENCE statement. The use of a COMMON block for this particu-
lar purpose is not recommended: The COMMON block should not
be accessed by any other task if it contains message data (al-
though a software interlock might be used for its protection
under certain circumstances), and declaring a named COMMON
block means that its name has to be kept reserved for the
entire system, which might make programming a little more dif-
ficult, aside from the fact that each COMMON block needs a
special treatment during linkage and locating. Anyhow, the
following examples show how data even of different types can
be arbitrarily arranged in memory. Suppose four variables,
two REAL (4 bytes long), one INTEGER*1, and one INTEGER*2,
should be stored contiguously. This can be done with a COMMON
block:

REAL A,B

INTEGER*1 I

INTEGER*2 J

COMMON /MESSGl/ I, A, B, J

The above sequence of statements has the effect that the first
byte of the common block holds I, the next eight contain A and
B, respectively, and the last two of the eleven bytes, J.
These eleven bytes can be referred to by specifying I as a
parameter in the corresponding routine calls. The second

- 40 -

LR - I--nn-'.- -"----n*-p- I'r’ H_*'-lrrf\nﬂn ‘. - rm -
R TN Pl s T D T s S fa et S A T S C I S Rty L SN R

P 20t 05 M MO M IO)

s
a
&~

;5 "
L0 .
e g 3.1 Design Considerations for a Real-Time Operating System
o approach requires a little more coding but confines its effect
. to the routine where the block is declared:
N
ny REAL A,B
oy a2 INTEGER*1 I
.;3) INTEGER*2 J
v INTEGER*1 DUM(11)
v EQUIVALENCE (DUM(1),TI),(DUM(2),A), (DUM(6),B),
o * (DUM(10) ,J)
A
;“ The four variables are forced into contiguous memory locations
H: g- by setting them equivalent to elements of the dummy array DUM
R0y X whose elements are, of course, intrinsically contiguous. The
resulting data block can again be referred to as I or - if
S, preferred - as DUM or DUM(1l). (FORTRAN-80 defaults to the
AN first element of an array if the subscript is omitted.) Great
A " care must be taken, however, to assign the correct locations
_} . within the dummy array to the corresponding variables as there
o is no checking whatsocever which could detect a possible over-
PS . lap or gap. The memory consumption and the execution time of
< the COMMON and EQUIVALENCE approaches are identical.
B .J -
\¥ Vy The special FORTRAN-iRMX-80 interface comprises two different
o~ sets of routines which permit to perform the "send", "wait",
:3 . and "accept" operations with a call from a FORTRAN program.
¢ i One set - FXSEND, FXWAIT, and FXACPT (compare chapter 4.2.1.1)
e - copies the contents of a specified data block into memory
:; supplied by the Free Space Manager, sets the additional param-
AN eters, sends the message, copies (within the receiving task)
o its data contents to a similar memory block which belongs to
- the receiving task, and returns the memory holding the message
: to the Free Space Manager. This set permits the unlimited
- - queuing of messages at the receiving exchange; it implies
P therefore a first-in-first-out buffer operation. 1Its routines
. are interlock protected and therefore not recommendable for
NN high speed tasks (aside from the fact that the Free Space
o Manager might impose an indefinite delay if it runs short of
» memory) . For applications with a critical timing, a second
N set of routines has been provided, namely, FRCRSP, FRSEND,
N FRWAIT, and FRACPT (compare chapter 4.2.1.2). Within this set
: - of routines, only one message is used for a given data inter-
" face. This message is allocated within the local memory of
:$ j; the sending task, together with a response exchange. Before
A any data is placed into the message, the sending task must
@ make sure that the message has already been returned by the
X receiving task, calling the LOGICAL*1 FUNCTION FRCRSP. If the
R message is available, it can be modified and sent to the re-
-Q) ceiving task. The receiving task copies the message's con-
. tents to its own data area and sends the message back to the
-3 p transmitting task. As all these routines are reentrant and,
-5 - 41 -
i
:::: "
B
L

:B'W

-

3G
J

G 2% 30 3 ™ S) 5N o L LN S e W) YO e L Y et o R A T R e e LYy G
:’.t' ,:‘ LY e X .,:,‘!‘n.!h ,k"'-' f‘ ,k"b .'-." ...h .:.!h‘m‘.’- ¥ e n..'.h \. .'— ~‘ N, .'.l. ".. e, 8% 1%, 0%, ‘0. n)1 'h‘l. 3"

e
5'\-‘*\

N
N
'P::':'
’)
R ™,
N
*S 3.1 Design Considerations for a Real-Time Operating System
s
ey as the data transmission is simply skipped if the receiving
[task did not yet acknowledge the receipt of the previous
e message, the tasks involved cannot be delayed. The penalty
A for this is the possible loss of information, and the lack of
{j a buffering feature. Still, the loss of information will
o usually not matter if it affects only data which are updated
o periodically.

3220

S

\ 3.1.6 Data I/O in a Real-Time System

R

-

.;', The program-user interface of a real-time process control
s system differs significantly from the one applied to a batch
; processing program: An ordinary non-real-time interactive
> program may request input, wait until the operator (or the
o disk controller) has supplied this input, continue execution,
N and write its results to an output device. This sequence may
o be repeated infinitely, still, the execution of the program
Py will always follow the same scheme. In a real-time environ-
g, ment, however, processing is (usually) not totally suspended

while a task waits for input. A number of other tasks may be
executed concurrently, and some of them may generate output.
The straightforward data I/O approach used in batch processing
- request for input and output of a result in a fixed consecu-
tive mode - does not hold any more in a real-time system. If
several tasks are executed in parallel (or, as a matter of
fact, consecutively but with undetermined order), they create
also output in parallel, and they require input in parallel
rather than serially. The I/O routines supplied with FORTRAN,

Lo
Al

-~ o
Y

254,
e AL %

=g$ however, support only a serial input and output. Therefore,
) special I/O routines were developed which permit random disk
) output, and quasi-parallel console output. The latter is ac-
'?ﬁ complished by random access addressing of the console CRT
T screen, which permits to write a particular output item (e.qg.,
ﬁy a measured parameter) always to the same location on the

A

screen. The output area on the console screen can be sub-
divided into a scrolled and a non-scrolled part to allow
random access output (in the non-scrolled portion), and the
display of basically sequential data such as the echoes of the
input entered on the console (which must necessarily be se-
quential) in the scrolled area.

®

b |

=y

P

0.‘*
L)

e While the generation of output by a number of different tasks
®.- does not create any problems (it might even be helpful if the
o amount of output generated varies strongly with time since
;?ﬁ using several output tasks would permit some data buffering),
P input cannot be performed unambiguously by more than one task.
jﬁ Generally, the operator has to be notified which data is
I, expected from him by the system, which is done with an output
9.,

Q? - 42 -
50
'’
'6?Q
X .\
L
e ¥

e J
s :f‘
whoh & Can

iy 5

N’ o M) (\ ‘V‘\fNﬂ INvl" W W WU o W WAL WL * " % & e ;
3 e AN N, LSt : .c Chidy, W0 :,\.t VRSNV

Oy, oy

L™ ke Sl Vit G NN e e i AR "Rt AR REa-hia- At Sie Ate Sda Ais &l iie ARe Sha 4 b Atu RAa Ate e Sth AN S9 b Sts Aia Rte Sea SN Bd Aal Aol Snk Aok Aol Bak AsldRal Bat Sab AU AC B el ol ol

¢
[

YA | St

5

-

e

- 3.1 Design Considerations for a Real-Time Operating System

‘-

action. Even if the task that has written the input request
line to the console waits immediately afterwards for the data
input there is no guarantee whatsoever that there will not be

.Ni an interrupt in between which, in turn, might make another
PN task issue an input request, possibly even before the first
‘:$ i~ request could be noticed by the operator. Therefore, only one
"y task within the system may perform all the data input and the
N n cutput of input requests. (In the CGCS, this is done by the
vgc:. Command Interpreter task.)

A similar philosophy applies to the disk I/O. Although the
special FORTRAN-iRMX-80 interface routines can handle random
disk files and although iRMX~-80 allows for cne file to be
opened for reading by more than one task, there are some
important practical restrictions. 1In general, only one task
should be responsible for the input from a disk file to make
sure that the contents of the file are processed correctly,
and only one task is permitted to write to the disk. Since
disk accesses can require relatively long times to be pro-
t- cessed it might be a good idea to perform data collection and
data output within separate tasks. This approach was, in
fact, used in earlier versions of the CGCS for the output of
measured data to a disk file; the undue consumption of Free
Space Manager-supplied memory by this approach demanded final-
ly to abandon it from version 2.2 on.

2L
[

-l

)

ene

XN PIYX.
oo

(LA Vo
RN
|_"|_J-_' ._)-_ [N '.

e~

.I.l
\

s
ot

3.1.7 Naming Conventions

LN

- In order to avoid a collision of the variable and routine
o~ names between the iRMX-80, FORTRAN-80, and interface routines
>) ! which are kept in various libraries, and between system and
‘:g-' actual application routines, special conventions for the names
e of program modules and PUBLIC entry points and data locations
- o have been defined:

Mo

N * iRMX-80 routines use names beginning either with "RQ...." or
e with "R?....". Some of the alternative iRMX-80 routines

which were provided for an enhancement of the operating

* '
Pt o1
bj ‘- system (compare chapters 3.3.4 through 3.3.6) use PUBLIC
.%'w variable names beginning with "R@....".
‘l". ! -
o * * FORTRAN library routine names begin either with "FQ...." or
®. with "F?....". Entry points internal to the special float-
YR ing-point routines based upon the 8231 APU (compare chapter
-3 f: 4.2.5) have names starting with "Fe@....".
NI
:{ . * Variable and constant names declared PUBLIC by the FORTRAN-
f£'34 iRMX-80 interface routines begin with "F0....".
B - 43 -
¥ *’\
) a
s" ;'\
.l‘.
°
,)J:)

B D Loy £ SR A AT AN N o [A Wty

S
""‘.""'.a'o"..l. L0 ’. R avu~l .Os () kA'il I‘:'l.ll‘ ‘.0':'1.:"'0

- 4]
.
.
-
o
[}

T " A 2 ~ ..‘(‘-(‘:‘\‘(‘7

ot

1@ 2

=)

i

P s

£ 4 e

3.1 Design Considerations for a Real-Time Operating System

F
Y S

e

* The names of reentrant FORTRAN-iRMX-80 interface routines
start with "FR....".

™
.

2
e 2

* FORTRAN-iRMX-80 interface tasks, non-reentrant routines, and
exchanges have names beginning with "FX....".

0% - BRRRRRY

e

s

g - > ‘l . £ -.
) f)‘,_,_,‘,‘.} VA

3

e o

2

>,

[}
. s

L A

r

T e e T P

Sonn A
".:'.: ."! PP _

k!
-

Yol

-

3 . P- "- r‘&“l_ L'.'." } . T

n = o

t
'
S

]

S _INCSPRrAE LY

-

2

T N VI 7, (IS JE TS
SISO ORI m&."’.

TR G lg oF L,

o N A A

S T,

3.2 Software Structure

3.2 Software Structure

As already mentioned above, the design of the controller
computer, and the choice of its operating system environment,
was directed towards a maximum of flexibility and ability of
the system to be run in a stand-alone mode. This entails that
the major part of the software which is to be executed on the
controller computer should be loadable from a mass storage
device only if and when required. Accordingly, only those
modules were designed to be Kept in Read Only Memory (ROM)
which are absolutely indispensable for the operation of the
system, i.e., the Nucleus of the operating system iRMX-80, a
Loader task which runs under iRMX-80 and which allows to load
programs from disk, and the Terminal Handler which constitutes
the interface between the software executed on the contrcller
computer and the console terminal. (The latter function was,
in fact, not required for boot-loading programs, but it ap-
peared reasonable to keep a routine in ROM which was presumab-
ly required by each application.)

The possibility to split a total of 16 KBytes ROM into two
banks of 8 KBytes each could advantageously be used for the
implementation of auxiliary programs like a Monitor which con-
stitutes a simple but powerful debugging tool, and a set of
hardware Confidence Test routines. These functions do not
necessarily require the support of iRMX-80; hence, they were
put into one 8 KBytes bank of ROM (Bank 0), while the iRMX-80
routines reside in the second bank, Bank 1. Since only one of
the two banks may be active at a given time, the use of the
Monitor or Confidence Test routines precludes access to iRMX-
80, and vice versa.

After power-on or a reset, the system first activates ROM Bank
0 (via the SID output of the 8085 processor), and executes a
memory test routine which is part of the Confidence Test. If
the memory test was passed without an error, the operator is
given the choice of either entering the Monitor routines, or
of loading a disk resident operating system, RXISIS-II.

RXISIS-II 1is, in fact, an iRMX-80 based task which emulates
the operating system ISIS-II (Intel's System Implementation
Supervisor) (hence "RXISIS"). ISIS-II is the operating system
developed by Intel Corporation for its Series~II Microproces-
sor Development Systems; it comes with a number of utility
programs some of which are indispensable for the stand-alone
operation of the CGCS computer, and it is a favorable environ-
ment for the development of additional utilities and auxiliary
programs. ISIS-II provides functions like directory-based
access to disk files, and unified input and output to devices
and disk files, to programs running under its supervision;

- 45 =

N
"J'-"- "

™ '\‘.'\.

o > -
a2 ‘(‘ -I'*_\'J‘ J\‘n“\f\l* u(‘ "‘\J' W }_‘-" e

\'\\ \.'&.

-

"").}{..'. . @
a e a0 h
‘.;’!’l’l'l‘l

bs
s

qgio

&l
.

n'l.
ANRR]

B0 A
2
v
.
&

a_ s
el

SEERE
¥ l. l., l- I' .

‘D

- fl-‘):
5.0, 0 4 5
ehﬂ{iﬂ{

LI

®.-

-y~

3

-y Ly
&
St

DR
2

g
TR
Jaw l'lf «

'

%,.k‘
1&’* &‘.

Xand XS
2§

P
-

-

»
-

-

3.2 Software Structure

RXISIS-II was accordingly designed to duplicate all essential
support functions within the iRMX-80 environment, essentially
by re-formatting the parameter tables of the ISIS-II system
calls and forwarding them to iRMX-80.

When RXISIS-II is to be loaded, the monitor submits control to
the start routine of the iRMX-80 Nucleus. After some internal
initialization steps, iRMX-80 creates a number of ROM resident
tasks; aside from the Terminal Handler and the Loader tasks, a
task named RXIROM is activated which programs the Loader task
to read the bulk of RXISIS-II from disk into memory. In addi-
tion, a small module is loaded from disk which contains the
cursor positioning codes for the console terminal used. Load-
ing these codes from disk rather than keeping them in ROM al-
lows an easy adaptation of the computer system to terminals
with potentially different control codes.

RXISIS~-II is, in fact, a continuation of this task RXIROM.
Similar to ISIS-II in the development system environment,
RXISIS~-II makes itself resident in part of the read-write
memory. An extension of the operating system, a Command Line
Interpreter, parses input entered at the console for valid

commands, i.e., for the names of available disk files which
hold executable programs, and loads these programs into the
remaining free memory. Programs executed under ISIS-II or

RXISIS-II are, in general, supposed to return control to the
operating system when they are terminated; the Command Line
Interpreter (but usually not the entire operating system) is
loaded again, and the next program may be invoked and exec-
uted. The memory maps of ISIS-II and RXISIS-II are compared
in Fig. 7; aside from the smaller size of the application
programs area under RXISIS~-II, and its slightly different
boundaries (which were necessitated by the larger size of the
iRMX-80 routines, compared to their ISIS-II counterparts, and
by some constraints imposed by the hardware interfaces of
iRMX-80), both systems are, indeed, very similar; wvirtually
all well-behaved ISIS-II application programs can therefore be
executed under RXISIS-II if they can put up with the lower
"ceiling" of available memory. ("Well-behaved" means that the
programs must route all their input and output operations over
the standard ISIS-II functions, as opposed to direct access of
peripheral devices.)

Although a wealth of auxiliary and utility programs can be
executed under RXISIS-II (including, among others, a BASIC
interpreter, and a full-screen text editor), this environment
is not particularly suited for the execution of complex real-
time controller programs like the CGCS. The emulation of
ISIS-II imposes a code overhead which is not required if the
proper iRMX-80 functions could be invoked directly as well.

- 46 =

mC A A e G NG LN

"

o L s a4 T S SRR TR P LS L A B A UL U A L
’ c.- > f’ e ﬁ" N 2050 oo ! Do UL T 't_\'. 4, W

%Y,

.7,

LW

e

Yemn B ma a2 & 1 1 X -

- o m

X%, YV« WWa ¥V4 RV

—
Ty

. ‘_-.{-.{'

8
LS

1

S TR YW TR Y T W T W T R e T WY . Y

TR

TV TETETT SN TUWYTTYNIWU YW LW T ST ARV LSRN

3.2 Software Structure
Furthermore, RXISIS-II has to provide all functions of ISIS-II
some of which are not required at all in a controller program.
RXISIS-II was therefore designed to be replaced eventually by
an arbitrary real-time system (as opposed to "program") which
could be tailored to comprise exactly the required operating
system routines. Such systems are, for example, a second,
iRMX-80-based, version of the BASIC interpreter, and, of
course, the CGCS. From the operator's point of view, there is
no difference between loading a program under RXISIS-II, or an
entire system; both are invoked by name. If the name of a
system has been entered, however, a small module only is load-
ed by RXISIS-II which deposits the system's name in memory and
re-starts iRMX-80. In due course, RXIROM loads the real-time
system instead of RXISIS-II. (The cursor positioning codes
for the CRT terminal are loaded in any case.) This task may
or may not be kept active within the loaded system; in the
CGCS, it is continued as the Command Interpreter task, which
allows to utilize its resources which otherwise would have
been wasted. Almost the entire read-write memory above the
small data area of the ROM-resident system is available to the
loaded real-time system.

FEFFH FRFFM

____ISIS~il MONITOR
ROM
AXISIS - Il OPERATING
o Eooon T SYSTEM EoooH
\
.’-‘.’ COO0H COoo0H
APPUICATION
Aooon Aooon «—— PROGRAMS
APPUCATION UNDER
o 8000H —__ PROGRAMS 8000H ISIS—i
UNDER
RXISIS - 11
g 50004 B6O00H
- 4000H 4000H
DATA AREA FOR ROM
F: 20004 ’/ RESIDENT SYSTEM 2000H w__ ISIS -1l OPERATING
.“- 1RMX - 80 MONITOR SYSTEM
v SYSTEM ROM| CONF. TEST
Q000 Q000H
::' CGCS CONTROLLER COMPUTER UNDER RXISIS ~ 11 MEMORY MAP UNDER INTEL'S iSIS-il
“
”,
."
e Fig. 7: Memory maps of the CGCS controller computer under
RXISIS-II (a), and of an Intel development system
;' under ISIS-II (b).
(1]
- 47 -
s
w
%
e
e A AT At R T K a4 A A e S A e A gl A AT A Y N _ .
P "‘a“f Pl f*f“a“r”r‘f“e*4'¢ e AT ol a‘(*f‘a‘f“w“f‘:‘; AL OR TN > QAR A

e na.-.t,

-

.
LR N

L L N

MO

Cale

a [
L

Tl - NG L Y

w
-‘\a\."\-‘ g%y

.I'

3.2 Software Structure

The Monitor may still be invoked from RXISIS-II or from any
real-time system, either via the RXISIS-II DEBUG command, by
pressing the "Break'" key on the console terminal, or with the
"Interrupt" switch on the cardcage. Since either the Monitor
or iRMX-80 may be active, any access to the Monitor disables
all 1iRMX-80 functions; the real-time system is virtually
"asleep". This does not matter very much in the case of
RXISIS-II, where fatal (disk) errors are also trapped by the
Monitor, but it might be disastrous during the execution of a
process control program. Therefore, entry to the Monitor was
made more difficult in the CGCS by disabling the "Break" key
detection; in case of a disk error, however fatal it may be
under ISIS-II or RXISIS-II, control is not vectored to the
Monitor either. (The "Interrupt" switch on the computer card-
cage still permits access to the Monitor even while the CGCS
is active, which is sometimes required for debugging pur-
poses.) The Monitor may be used to inspect and modify memory
locations and processor registers, and to set breakpoints in
program code and execute programs until a breakpoint is en-
countered; iRMX-80 resumes full operation while a program is
being executed from the Monitor. The Monitor also allows to
re-boot RXISIS-II, which is, incidentally, the only way (short
of a hardware reset) to terminate iRMX-80 BASIC, and it per-
mits to activate the Confidence Test.

- 48 -

L R S S > e - \’s-‘?;\ -,‘_.-- S _,. AERIILI Y S T3S
\'-ﬂ"nﬂl\ﬁ N‘."’\' % \' "J'.-I' J' " b ‘(\ < T .. N \' b . b n.

\ 'i

o, L o . o\ ot

TR
A . "

';
4, .'{
.5 3.3 ROM Resident Software
3.3 ROM Resident Software
4
! 3.3.1 The RXISIS-II Monitor
S The RXISIS-II Monitor is kept in bank-switched ROM; it does
(> therefore not consume any of the iRMX-80 system's resources.
; In order to permit proper memory bank switching, the Monitor
must only be entered and left via special code sequences.
'} {The same applies to the Confidence Test which is entered
Y - anyhow upon reset or from the Monitor only.)
';ﬁ The Monitor can be accessed in the following ways:
”.
” (1) After a system reset, or after execution of the Confidence
- Test.
] :-":
7 (2) From RXISIS-II with the DEBUG switch.
A (3) From RXISIS-II or any application system via a Break
r entered on the system console.
-, (4) From RXISIS-II or any application system via an RST 5.5
o hardware interrupt which is generated by pressing the
- "Interrupt" switch on the cardcage.
h i (5) From RXISIS-II upon fatal disk errors.
‘ Entry to the Monitor via a Break or an RST 5.5 interrupt is
e locked out during program file loading operations. (This is
S necessary as the Monitor uses the Loader buffer as scratch
. memory. Programs loaded while a Monitor interrupt happens
might therefore be mutilated.) RST 5.5 interrupts are ser-
! viced immediately; entry requests given with a Break command
o become effective only after the Break key was released. Since
: a Break is initially noticed by the Terminal Handler as a
"y transmission error, a beep and a "<" error character may be
(o output by the Terminal Handler before the Break is serviced
(compare chapter 3.3.4.2). This constitutes no actual error
-~ and can be ignored.
)
]
'gﬂ Note: Debugging in a real~time environment requires utmost
caution! From the point of view of iRMX-80, the Monitor
o belongs to the task during whose execution it was invoked. By
& no means, the user must attempt to commence the execution of
‘ code belonging to a different task since this inevitably
s messes up the system totally. This demand is implicitly ful-
‘N filled if the user refrains from specifying a start address
. with the "G" (Go) command.
{
[\
' - 49 -
&
1
1,
¢

PA A oML o et A AN St R E L Dl A |

3.3 ROM Resident Scftware

3.3.1.1 Monitor Commands

All Monitor commands may be entered with upper- or lowercase
characters. They consist of one single character, and one or
more parameters, if applicable. Multiple parameters must be
separated either by a comma (",") or by a space; no space is
permitted between the command character and the first parame-
ter. All numeric parameters are interpreted as hexadecimal
numbers; only their last two or four digits (depending on
whether a byte or a word parameter is required) are relevant.
Errors during parameter entry can therefore be corrected by
repeating the parameter without an intervening delimiter until
the last two or four places are correct. Input lines are
generally entered with "Return"; any other input than hexa-
decimal numeric characters ("0" through "9" and "A" through

"F"), comma, space, and Return causes a "COMMAND ERROR" mes-
sage. A period (".") is used by the Monitor as an input
prompt character. The command syntax was chosen similar to

the ISIS-II Monitor.

The following Monitor commands are available:

D<locfrom>[,<locto>)
Display Memory Contents:

The contents of all memory locations between and in-
cluding <locfrom> and <locto> are displayed in hexa-
decimal. Only the contents of <locfrom> are displayed
if <locto> is omitted or less than or equal to
<locfrom>.

E Exit to the Current System and Close Open Files:

[l
IS

Upon this command, the Monitor is left, and control is
submitted to the currently active operating system.
In general, it lies in the responsibility of the cur-
rently active system to close all open disk files, and
to restore a defined state of all routines used (com-
pare chapter 3.4). This function requires therefore
the "cooperation" of the current operating system, and
it is therefore not available with some application
systems (e.g., with iRMX-80 BASIC). In such a case,
the Monitor tries to execute the "Q" (Quit) command.
Either command must be explicitly confirmed by the
user.

L
f??&
a ap

X E

...
_fn‘v e

.

Dl S0)
*L'l =2

Y
'l‘nn i

N

b
Pl

2@ 5

- 50 -

-,
-
.o

ll{{l

5

<

- O -
|
?‘lr"’-'\

~
S @
- = 8 .

Yo
b

s LA

LA

3.3 ROM Resident Software

¢

| F<locfrom>,<locto>,<byte>
Fill Memory With a Specified Byte:

-
b

The locations between and including <locfrom> and
. <locto> are overwritten with <byte>. An error message
: is output if the operation would extend into ROM.

\

‘=|3 G(<start>][,<breakptl>[,<breakpt2>]]

S Go - Execute Program Code:

E - The Go command permits the execution of program code.

N The execution begins at the location <start> or, if no

’ <start> address was specified with the command, at the

A location determined by the current Program Counter

::\ contents (compare "X" command). Up to two breakpoint

TR locations may be specified at whose execution the pro-

gram is to be interrupted. These locations must lie

Q in RAM, and they must contain the first byte of an
~ executable machine code instruction. Furthermore,

they must not be overwritten by an intervening program
loading operation lest the breakpoint becomes ineffec-
tive and unpredictable results ensue after the monitor
; was activated the next time. In a real-time environ-
Y ment, the breakpoints may belong to arbitrary tasks.
‘. i The start location, however, must belong to the task

during whose execution the Monitor was invoked. Note
that breakpoint specifications must be preceded by a

E s

.- delimiter (comma or space) if the default start loca-
e tion is to be used.

; . H<param>, <param>
™ Hexadecimal Addition and Subtraction:

The "H" command performs an addition and subtraction
of two two-byte parameters. The sum and the differ-
ence (in 2's complement notation) of the two param-
eters are displayed.

5
A D

Y

T

Cu
p I[<port>]
' ;.5 Input Data From I/0O Port:
)
- This command allows to read the contents of any ar-
r . bitrary I/0 port. <port> is interpreted as a one-byte {
K number in hexadecimal notation. For multiple inputs
X ~ from the same port, the <port> parameter may be omit-
R ted. The command defaults to the last port specified
o in this case.
1
X - 51 -
P
K
)

s

o

- ~ RS - S R RS A A e A e T T » p A AN N0 P
e e R S Sy

iy
o
o
o
N
>
e 3.3 ROM Resident Software
» M<locfrom>,<locto>, <destloc>
i' Move Memory Contents:
.l
v The "M" command permits to move the memory contents
™~ between and including <locfrom> and <locto> to loca-
}i tions starting with <destloc>. <destloc> should not
2y lie between <locfrom> and <locto> in order to prevent
‘? the modification (by partial repetition) of the byte
¥ pattern to be moved. <destloc> must be located in
. RAM. Memory contents are transferred in increasing
N address order.
)
-
O[<port>],<data>
o Output Data Byte To I/O Port:

"
2 The data byte specified with the command is output to
ﬁ the I/O port specified with <port>. The <port> ad-
N dress is interpreted as a single-byte number and may
o optionally be omitted; in this case, the Monitor de-
° faults to the last output port specified. The <data>
i byte must be preceded by a delimiter if <port> is
E omitted.
1S5
[}
ﬁ% P{(0|1) Printer Output On/Off:
'{; All Monitor output shown on the console CRT can be
oy routed, in addition, to the printer. A "P1" command
L turns on this function, a "PO" command turns it off.
~ A built-in time-out function disables the printer
- output if the printer did not respond within a certain

time (10 to 30 seconds, depending on the clock fre-
- quency used). (This may also happen during lengthy
L7 Monitor output operations with the "D" command if the
’3: printer's input buffer needs longer than the time-out
f:, to be emptied. If this is regarded as a problem, it
. can be fixed by reducing the printer buffer size.)
[)
o
ff Q Quit the Monitor and Re-Boot RXISIS-II:
!..
%‘ The "Q" command permits to leave the Monitor and to
e re-boot RXISIS-II. Open disk files are not closed
. @. before RXISIS-II is re-booted; files which may have
o been open for writing or updating will be mutilated in
L, this case. Great care is therefore required when the
g "Oo" command is used to prevent the loss of output
g files. The command must therefore be confirmed ex-
o plicitly by the user.
"‘,q - 52 -
n
0‘:'
1‘..
"

AR

3.3 ROM Resident Software

S<address>, <data>[,<data>[,<data>...]]
Substitute Memory Contents:

This command allows to change the contents of arbi-
trary locations in RAM. When the <address> input is
terminated with the delimiter character, the current
contents of the location at <address> are displayed.
Hexadecimal data entered at this stage are used to
replace the old contents of the specified location.
No change of the location displayed is made if another
delimiter is keyed in without an intervening hexadeci-
mal number. In either case, the address is increment-
ed by one, and the above procedure is repeated. The
command is terminated with a "Return®.

X Display Register Contents:

X<reg><data>[,<data>([,<data> ...]]
Modify Register Contents:

Two versions of the "X" command permit the display and
the modification of register contents, respectively.
Upon entry of a plain "X", the contents of all proces-
sor registers are displayed. The second command mode
permits to modify the register contents, beginning
with the register specified with <reg>, similar to the
"S" monitor command. <reg> may be "A", """, 6 wcw wnpn
"E", "H", and "L" for the corresponding registers, "F"
for the flags, and "S" and "P" for the stackpointer
and the program counter, respectively. The current
contents of the register to be modified are displayed;
the register may either be overwritten or preserved,
depending upon whether a hexadecimal number followed
by a delimiter, or a delimiter only is entered.
Following a data entry with a delimiter permits to
modify the next register; the command is finally
terminated with a "Return". (The sequence of registers
is A, F, B, ¢, D, E, H, L, SP, and PC for either "X"
command.)

A Enter Confidence Test:

The Confidence Test routine can be entered with the
"Z" command at any time. A user confirmation is re-
quired. Note: When the Confidence Test returns to
the Monitor, it resets the stackpointer to the top of
the Monitor's stack, and all other registers to zero.
It is therefore not possible to continue the execution
of a program after the execution of the Confidence
Test.

- 53 =

. ; »
R,

‘e
RO

V00 0y 1‘0
o"'c'.:‘ ! b

T

,ﬂ-ﬂ’&l";“
<
¢
[

!-i e
Pl o 4

A

3.3 ROM Resident Software

e

Pl

3.3.1.2 oOther Monitor Functions

The Monitor provides, in addition to the above utilities, de-
tailed system error message output. All errors which are con-
sidered fatal under RXISIS-II are trapped there (essentially,
these are the errors defined as fatal under ISIS-II, plus all
errors happening during system bootloading). Application
systems may use this feature as well; it is not utilized,
though, by the CGCS. The calling sequence for the error
message generation routines is outlined in chapter 3.3.6.

Yt .'l:“';" ‘,5

TEEEEE
. & 1] -
"'r{‘v/ A /) JAN

>
»

3.3.1.3 The Monitor in a Real-Time System

'
¥

As mentioned above, the Monitor is executed as if it belonged
to the task which was active while the Monitor was invoked.
This is true although the interrupt dependent iRMX-80 func-
tions are disabled while the Monitor is active. Due to the
inherent complexity of a real-time system, great care is
required to prevent system breakdowns when Monitor operations
are performed. This does not only involve caution when regis-
ter or memory contents are changed; this applies particularly
to program execution, and to Monitor exiting.

AN

LA

v

=
el g

RO

In most cases, the "G" command, specified without start and
breakpoint addresses, is the most straightforward way to
return to real-time operations. The system continues where it
was interrupted (unless it was interrupted by a fatal error
under RXISIS-II, in which case RXISIS-II has to be re-booted
anyhow), and behaves as if it never had been interrupted at
all. (Since the Monitor halts iRMX-80, periodic operations,
particularly, the timekeeping functions, are disabled tem-
porarily. The time displayed by the CGCS will therefore
differ from its correct value by the duration of the Monitor
operation.)

Y=
‘l

el

ANDA
O

®,

b

PPN
Al‘..
LRI
AR

The "E" command, in contrast, permits to terminate a program
executed under RXISIS-II, and it also terminates the CGCS.
Application systems which want to utilize this feature must
take care not to override iRMX-80 task scheduling. Upon an
"E" command, the Monitor executes a routine which must be
provided by the application system; its start address has to
be stored previously in a dedicated Monitor location in RAM
(see Appendix 3). Control must by no means be passed directly
to the system task which performs the termination operations
like disk file maintenance; such an approach would mean that
the task interrupted by the Monitor call might be continued as
another task, which is an absolutely fatal error in any real-

i ideig T .
O sy @ BN NS0y

»

Fhl's
PP

SN

&

- 54 -

2
5

e

LN

o

o

T R P L O e R T T S T S N TP L N N T I S T RO N T T TN ¥ AT
o e e Lt ot e S R e A I AR 4

3.3 ROM Resident Software

. time system. The only unambiguous procedure which allows a
E safe Exit operation is discussed in the next chapter.

It should be noted, though, that a Monitor Exit only closes

~ open disk files but does not perform any of the other clean-up
Tn chores which are essentially required for a safe operation of

a process control system like the CGCS, particularly if it is
(] in charge of the puller. The "E" command should therefore
ﬁ used in case of an emergency only from within the CGCS.

The "Q" command, finally, is an uncompromising way to quit the
B Monitor: the current system is simply destroyed by restarting
& iRMX-80 and re-booting RXISIS-II. Still, it is the only way
to leave systems such as iRMX-80 BASIC which do not provide
~ any other means for the termination of their services. (The
o "Q" command processing sequence is automatically entered by
the Monitor if an "E" command was issued but no provisions

were made for exiting the real-time system with a preceding
~ clean-up.)

A Hardware System Reset is approximately equivalent to enter-
ing the Monitor, e.g., via a Break, and quitting with the "Q"

command. Upon a Reset, the Monitor is entered via its Restart
sequence; entering a "Return" permits to re-boot RXISIS-II.

3.3.1.4 Exit From the Monitor

:l:% Due to memory bank switching, the Monitor and Confidence Test
- routines may only be left via two paths, namely:

B (1) Via a RST 1 instruction which bootloads RXISIS-II, and

(2) via a jump to an exit sequence located at 1FFS8H.

ivs

The first path is used by the Monitor upon a Quit ("Q") com-
mand, the second, upon Go ("G") and Exit ("E") commands.

% Systems which ought to provide the possibility of an Exit
. ("E") Monitor command have to pursue the following steps:
H (1) They have to store the start address of an Exit Routine in

the Exit Pointer locations of the Monitor, i.e., at the
addresses 2008H (low byte) and 2009H (high byte) (see
Y a Appendix 3).

(2) This Exit Routine must be written as a subroutine (which
is eventually called by the Monitor) which must return to

fl the Monitor (with a RETURN instruction) in any case. The
w
-~ 55 -
;,'\
-
o

") P A o Y 'N“;‘W - ‘t\"‘:" VLGS l" A AT d .‘. 1 \ v . JON
e e % AR R R A N R e AR AR

o

i®

P
bt S

3.3 ROM Resident Software

s
Ay 4 & &

o
2

Exit Routine may set a flag which is polled by a system
d task in charge of the file handling. Whenever the system
task finds this flag set it should close all open files
and perform gubsequently all actions considered appropri-
ate. The Exit Routine should not attempt to directly
accomplish these operations itself. This approach was
chosen for RXISIS-II where the exit flag is checked each
time the ISIS-II entry point or one of the ISIS-II Monitor
subroutines is invoked. There may be a considerable delay
between exiting the Monitor and a call to any RXISIS-II
system routine, though, during which the program to be
terminated keeps on running.

A different (and faster) approach is employed by the
special Disk I/O routines (compare chapter 4.2.3) which
are used by the CGCS: The Exit Routine sends, in this
case, a message to the Disk I/0 Interface task which
triggers the file closing sequence. A message can be sent
from any task, and the termination sequence is started
immediately; hence, no noticeable delay between an "E"
command and its execution can be seen in the CGCS.

g_ ‘, } P T) -
P A AL NI
’-‘, l"}"} 1 t’sfﬂi" ll Pl "-

-‘l ‘.l .‘.

3.3.2 The RXISIS-II Confidence Test

2

The RXISIS-II Confidence Test code is kept in bank-switched
ROM and does therefore not consume system memory under regular
iRMX-80 operation. It can be invoked and executed from the

Monitor {(compare chapter 3.3.1). In addition, the Memory Test
sequence is run after each power-up reset in order to confirm
proper system operation. It is not executed upon a reset

triggered when the is already running, which permits to in-
spect memory after a system reset necessitated, e.g., by a
software failure.

All functions of the Confidence Test can be selected inter-
actively in turn. Ample user information is provided.

Upon completion, the Confidence Test returns control to the
Monitor.

ARSI
':;n f-:i.&: LI

L3
-

o

3.3.2.1 Memory Test

Fod

%
o %,
sk

igf The Memory Test comprises the following features:
-
B A A
o (a) Verification of the ROM checksums.

AN

0.,
v u:: - 56 -
i J-,'

e
\ -’:‘v
NS
o

0.

"3

s

Vo Vo TS TR W 4 el " % TR TR e TR0 T AN PR --_,..‘

O e T T N G A M L AR s,

3.3 ROM Resident Software
(b) Check of the proper function of the RAM.

(c) Initialization of all RAM locations (except between 3000H
and 30FFH) with zeros.

N
2~ SRS

-
.j The current status of the Memory Test routine is output on the
. console CRT by means of eight binary digits which represent
) » the address range currently under test. The routine halts if
~ an error is detected; the display on the console CRT indicates
N in this case the whereabouts of the erroneous memory location.
- The following sequence of operations and output is performed:

__-/
xS CRT DISPLAY
[NONE] RAM check at locations 2000H ~ 2020H.
> 0000 0000 ROM sequence test (ROM 0 - 1 - 2 - 3).
- 0000 1111 Checksum test of Bank 0, ROM 0 and 1.
e 0001 1111 Checksum test of Bank 0, ROM 2 and 3.
. >BEEP<
- 0000 0000 Preparation for the RAM test.
XXXX XXXX The display counts down twice from 1111 1111 to
0010 0000. The binary numbers displayed indicate
ho the high byte of the address under test.
) >BEEP<
) 0000 1111 Checksum test of Bank 1, ROM 0 and 1.
0001 1111 Checksum test of Bank 1, ROM 2 and 3.
: ‘n >BEEP<
3.3.2.2 CRT Console Test
The CRT Console Test permits to check the communication inter-
. face to the console terminal. Each character entered at the
A console is echoed multiplely in order to fill 24 lines with 80
characters each. Control characters are indicated by an up-
- arrow (" ") preceding the pertinent regular ASCII character.
S Since there are no carriage return or line feed characters
embedded between the 80%24 characters, a bottom screen line
A which is not completely filled indicates problems with the
L transmission protocol (compare chapter 2.3.8). Transmission
ks errors such as parity, overrun, and framing errors detected in
the data received by the system are reported. The Console
é! Test can be left at any time by entering a space.
)
Q 3.3.2.3 Printer Test
The Printer Test routes any input from the console to the line
N printer. The console input is transmitted literally, i.e., it
a
- 8§87 =
"~
3
4
G

R R R R A R R T R N T R s et v

By

-_w
a

i

. 3.3 ROM Resident Software

is necessary to enter a carriage return and a line feed in or-

)
(der to receive these characters on the printer. All control
) characters including "Escape" are transmitted. The test can
42 be terminated by entering two consecutive "Escapes".
)
N
'
. 3.3.2.4 I/O Port Test
N ¥
,r The I/0 Port Test sequence permits to read data from and to
)

write to any arbitrary I/O port. Address and data inputs are
requested and output is given in hexadecimal notation. (The
N "I" and "O" commands of the Monitor are probably more conve-
nient for this purpose, though.)

>,

XS

-s.: .

™ 3.3.2.5 Floppy Disk Test

N
A The Floppy Disk Test provided with the Confidence Test rou-

e tines supports two standard size, single density, single side

- drives under an iSBC 204 Disk Controller. The test performs

. the following operations, first on drive 0, then on drive 1:

- (1) Recalibrate (position head over track 0).
! (2) Format (provide track and sector information on the disk).

> Disks formatted with this function are not compatible with i
'; ISIS-II or RXISIS-II! !
ot :
o (3) Verify CRC (check the cCyclic Redundancy Check checksums !
i generated during formatting). 5
} (4) Random Read/Write Test (write data into randomly distri-
2 buted sectors and read them back for verification).

- NOTE: The contents of the disks used in this test are irrever-
K sibly destroyed!

e

Dl |
> ‘
, 3.3.3 The iRMX-80 Nucleus i

) !

The iRMX-80 Nucleus resides in ROM Bank 1 which is to remain }

- @ active during all regqular iRMX-80 based operations. The ROM 1
KA resident iRMX-80 routines comprise the necessary iRMX-80 sys-
e~ tem initialization information, and the iRMX-80 Nucleus prop-
o er, i.e., the routines responsible for the maintenance of the
N, operating system, for the proper scheduling of tasks, and for

N the transfer of messages between then.

3 ;

: - 58 -
3
0 |
s‘

0 |
D ‘\
. |

N

~

""" NSRS ERCRN RS, ! ‘*ﬁc&&%&ﬁ@%‘%ﬁ&%ﬁg

Laua nd S Sl Badl Bafh Sad Sad s f Sl Bedl S Sl Al Sakk A Al I 0" B At B A e AN St SN SR ot il RARL SRS UL th ot gl ot i ath pid aRf AR ML A S bl Al ol AR AL A AR AL A A L A

IR RN

3.3 ROM Resident Software

After the internal iRMX-80 structures were created, a number
of iRMX-80-supplied tasks or their replacements (the Alterna-
tive Terminal Handler and the Loader Tasks), and a task named
RXIROM start running. RXIROM programs the Loader Task to read
the cursor positioning routine RXISIS.PSC from disk (compare
chapter 3.3.4.1.7), and to subsequently load either RXISIS-II
(from a file RXISIS.BIN), or any other real-time application
(like iRMX-80 BASIC, or the CGCS), and vectors control to the
loaded code. Since the loaded systems have to refer heavily
to addresses in ROM (e.g., for all Nucleus function calls), it
is essential that the program loaded from disk was actually
configured for the ROM version used. This is checked by
RXIROM by means of a ROM version code which must be provided
by any loaded system in a particular memory location (compare
Appendix 3).

3.3.4 The Alternative Terminal Handler

The Alternative Terminal Handler replaces the Full Terminal
Handler of iRMX-80. All functions performed by tie iRMX-80
Termina: Handler are identically available from the Alterna-
tive Terminal Handler. The following major differences be-
tween the iRMX-80 Full Terminal Handler and the Alternative
Terminal Handler apply:

* Improved line-editing.
* Fixed-screen CRT console output possible.

* Additional printer output supported.

* Additional single character input feature.
* Additional control functions.
* Break detection.

The most important feature of the Alternative Terminal Handler
is, aside from more convenient line-editing, the possibility
of a Fixed Screen output, which encompasses the output of a
dedicated cursor positioning code prior to each output action.
After each regular output operation, the Terminal Handler
re-positions the cursor to the current end of the input line,
whose position on the screen can be freely specified by the
programmer. The CRT terminal used must permit direct cursor
addressing.

€ Tt AT m e T AT A -'. - .J' } STt " ') I\ ~ \J,\ '\
.. EINREONNRNGY. . AR
’. n’.‘- ..\ -ﬁ,-‘;n\ .‘L’f.'h.,‘ Wit W 1y TN Wy Yoaha? aYaN atmal \

o .
AANAR

LA 5N
PN

a1,
-
Y

aa
Y

3.3 ROM Resident Software

At system restart, the Terminal Handler is in the conventional
scrolled output mode, i.e., input data is always echoed in the
currently last line on the CRT screen (which is, due to the
automatic scrolling of a CRT terminal, in most cases the bot-
tom line of the screen). Output data is also appended sequen-
tially in the currently last line. The CRT screen thus repre-
sents a sequential protocol of the most recent I/0O operations.
This approach is no more suitable for a genuine real-time sys-
tem: Miscellaneous output is usually generated in a random
sequence and at different rates for different items. Since
the occurrence of an output operation may not be predictable,
it is close to impossible to permit the entry of operator
input without disturbance by interspersed output. The only
approach to avoid this problem and to permit the operator to
monitor a complete overview of the system's most recent output
is to use a Fixed Screen approach where each input or output
item has its dedicated place on the CRT screen. Updating of
the CRT screen does therefore no more affect the location of a
certain item on the screen, quite in contrast to the scrolled
mode.

In the Fixed Screen Mode, the Alternative Terminal Handler
reserves two contiguous lines where the input echo is built.
No output data should be directed to these lines. While it
lies in the responsibility of the application software to
provide the proper cursor positioning code in front of each
output string, the Terminal Handler re-positions the cursor
automatically to the current end of the input echo string
after each output action. No interference between output and
input operations can thus happen since all input characters
echoed are simply appended to the input line. The input line
itself is cleared by the Terminal Handler when a new input
string is requested; the position of the input line on the
screen and, if required, an input prompt string may be speci-
fied by the programmer.

Similar to the Full Terminal Handler, the Alternative Terminal
Handler provides a type-ahead feature, i.e., data can be en-
tered although no input request from other tasks is currently
pending. The type-ahead buffer permits the entry of up to 80
characters, depending on the number of type-ahead lines (up to
20 (empty) lines can be entered into the type-ahead buffer).

Two I/0 features are new, compared to the iRMX-80 Terminal
Handlers: First, output to a printer (or any other device
which can be connected to a serial output port and which re-
ceives output but does not generate input), and, second, a
single character input (in contrast to the line-oriented input
featured by 1iRMX-80). Furthermore, the list of Terminal Han-
dler Control Characters (RQCTAB) was extended, and hence the

- 60 -

AR

COOR PN A

e
LYY

<
L R N N

" - - .y .
ke PR PO] !

S

R AN

-

-l a

B

tr Ny
)

T

e

e o

e |

«,

b S
PN

BN

L%

¢ 1
LAY

FFr "W

ol
<

4 ” ol Y N i) SN W D OUOMAKTF IGO0
o e e R A A R TN GO)

TTETI RS SRV UV YW 1" T T " T \Z Tl LT LW WLy WYy sNeVesve T "7 s W

3.3 ROM Resident Software

number of control features. In addition, an arbitrary routine
supplied by the application system (R@@BRK) is invoked if a
"Break" is received from the console, and if the break detec-
tion is enabled.

3.3.4.1 Programming Interface

Both with regard to the programming and to the operator inter-
face, the functions of the Alternative Terminal Handler are
upwardly compatible to those of the iRMX-80 Full Terminal Han-
dler. The following information is therefore kept concise as
far as it is identical to the programming of the iRMX-80 Full
Terminal Handler.

3.3.4.1.1 Line Input Operations

Requests for an input line can be directed to either the Reg-
ular Input Exchange RQINPX or to the Debug Input Exchange
RQDBUG. During regular operation, RQDBUG is inactive; it be-
comes active only after a Cntl-C was entered at the console.

The format of the Read Request Message which has to be sent
either to RQINPX or to RQDBUG is identical to that of the
iRMX-80 Terminal Handler; the following TYPE values are per-
mitted:

* READSTYPE (8), which permits reading using the type-ahead
feature of the Alternative Terminal Handler.

* CLRSRDSTYPE (9), which clears the type-ahead buffer prior to
requesting an input line.

* LASTSRDSTYPE (10), which disables the input from RQDBUG and
enables input via RQINPX. LASTSRDSTYPE preserves the con-
tents of the type-ahead buffer.

3.3.4.1.2 Console Output

Two exchanges are available for generating console output,
namely RQOUTX and RQALRM. RQOUTX may be disabled, which is
not possible for RQALRM. As with the iRMX-80 Terminal Hand-
ler, the following message types are permitted:

- 61 -

4o » A RY O T SN, Y, e

5 % ‘Ykl
¢
A

N0 — QR0
b ‘.|<~d

l. "

.'.',. o
v .

-

SHN5Y

B

‘L"

et

a
> 2
L

oo
]
IR

R
2, 0, 9, 4,
e

Lo
g

\ 25y

Y

LAY

5

2.

s % !
.
Jal

LTING .
A , RAAAAY

'®

o -
x
f ol b

R
o

"“

‘\

y o, o Ca W ™
DNPNNE Y o e o A SN

3.3 ROM Resident Software

* WRITESTYPE (12): A message of this type may be sent to
either exchange.

* ALARMSTYPE (11): Messages of this type must only be sent to
RQALRM. The output of the bytes specified with the message
is initialized with a string of five asterisks ("*") and two
BEL characters. Note: In Fixed Screen output mode, the
output strings supplied by the user tasks must be initiated
with a cursor positioning code sequence. Since this se-
quence 1is only output after the above alarm string, the
position of this string on the screen will be undefined.
The use of ALARMSTYPE is therefore discouraged if in Fixed
Screen mode.

3.3.4.1.3 Printer Output

All output which should be sent to the printer (or whatever
serial output device is connected to the second RS-232 port of
the system) must be sent to the exchange RQPRNT. Only WRITES-
TYPE (12) is permitted as message type.

3.3.4.1.4 Line Input and Output Request Messages

The format of the request messages for the three above opera-
tions is identical.

0
LINK
2
LENGTH = 17
4
TYPE = SEE ABOVE
5
HOME EXCHANGE (NOT USED)
7
RESPONSE EXCHANGE
9
STATUS
11
BUFFER START ADDRESS
13
BYTE COUNT
15
ACTUAL
17
- 62 -

s ey o e 22 2 e S A S T T DA R L AN

e e e

-
a
J

n .

Y
»

B

T

Lol i

«
LR .
afel] LS —~

l'} "’

PSSy

r F o

EY
-

?

T

R

3.3 ROM Resident Software

STATUS and ACTUAL are set by the Alternative Terminal Handler;
all other items must be provided by the programmer. STATUS is
either 0 if the requested operation was performed properly, or
18 (BADSCOMMAND) if an illegal TYPE parameter was specified.
ACTUAL is set to the number of bytes actually input or output.

3.3.4.1.5 8ingle Character Input

Single character input as provided by the Alternative Terminal
Handler bypasses the control character evaluation and line
editing functions of the Terminal Handler; it was included for
compatibility with ISIS-II and its Console Input (CI) routine.
Input of a single character can be requested by sending a re-
quest message to the exchange RQCHIX. The next character in-
put after the request message was received at RQCHIX is re-
turned with the request message rather than being processed by
the Terminal Handler. An application system which chooses to
utilize this function should make sure that always at least
one request message is waiting at RQCHIX in order to prevent
input characters which were entered while no request message
was waiting from being added to the Terminal Handler's buffer
and being therefore lost for the routine using the single
character input. Furthermore, line input request messages of
type CLR$SRDSTYPE (9) should be used for intervening and con-
cluding line input actions in order to clear spurious contents
of the type-ahead buffer.

A request message sent to RQCHIX must have the following
structure:

0
LINK
2
LENGTH = 10
4
TYPE = ARBITRARY
5
HOME EXCHANGE (NOT USED)
7
RESPONSE EXCHANGE
9
INPUT CHARACTER
10

INPUT CHARACTER is returned by the Alternative Terminal Hand-
ler; in order to conserve time, no further syntax check is
performed on the request message.

- 63 -

iy

L

NN 3.3 ROM Resident Software
g:: 3.3.4.1.6 Output Mode Setup and Input Prompt String Selection
{

WA The subroutine RQISCM was provided to permit the selection of
.\E the output mode (scrolled output or Fixed Screen), of the
,;i input lines in Fixed Screen mode, and of an input prompt
'y string. The maximum length of this string is determined by
o8 the relation

\

AN string length = 32 - cursor positioning string length -
o - 2*(line clearing code string length +1)

>, S

l.'. (]

JI;; Longer strings are truncated.

, An output mode change can ke effected at any time by a call to
oo the Terminal Handler subroutine RQISCM. This routine should
o be called by only one task within the application systen,
Lo preferably while no input request is pending. The following
;gi parameters must be passed to RQISCM:

° CALL FROM PLM:

e

o CALL RQISCM (.inline,.printl,.inistr,inisl)

's.':-:‘

tx{ CALL FROM FORTRAN:

Ny

i' CALL RQISCM (inline,printl,inistr)

;:f: with:

.

-7 inline Number of the line on the CRT screen re-
H;{ served for the input echo.

inline = 0 ... Conventional Scrolled Mode
inline <> 0 .. Fixed Screen Mode

uf

c;{ printl Number of printable characters within the
B input line initialization string (must be
‘TN less than or equal to the initialization
e .

P string length)

ot inistr Input line initialization string: Must
@ contain all information exceeding the
N cursor positioning and line clearing
R, codes; input prompt characters may be
N entered here.

) inisl Input line initialization string length.
(¥

@, PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

¥ A

fbﬁ STACK Input Line Number Storage Location

ifﬁ STACK Printable String Length Storage Location

‘o B+C . Initializatiocn String Start Address

320 E ... Initialization String Length

) - 64 -

A0 WAL s AN IASOUONNO G \ OO0 3 :
TN N A '.‘m?-\.?-!'.!.'.‘.' 0 G R, N e

vl at @

LR

s

.

<
ca e

(o'

* ...lf’

B OEINA
““""'.'.I;‘?h

+
)

*
1.‘- a?

e
‘t

3.3 ROM Resident Software

Note that in Fixed Screen mode the Alternative Terminal Hand-
ler clears the input line specified with the "inline" param-
eter, and the line following it. No check for the validity of
the line number submitted is performed. The two input lines
may virtually be located everywhere on the CRT screen; how-
ever, the bottom line of the screen should not be included
into the input area if the input echo (including a leading
prompt string) might exceed one line on the screen; otherwise,

the display would scroll up when the input line is terminated
with Carriage-~Return.

3.3.4.1.7 Cursor Control Code Generation

In general, the cursor positioning and line clearing codes
required depend on the type and make of the CRT terminal used.
In general, they must be determined at system configuration
time. In the implementation of the Alternative Terminal
Handler on the CGCS computer, the terminal-dependent codes are
kept in a disk file which is loaded in front of any real-time
application system. This disk file has to provide the follow-
ing labels at the specified addresses:

27DOH ... Vector to the Cursor Positioning Code Generation

Routine.

27D3H ... Vector to the Line Clearing Code Generation Rou-
tine.

27D6H ... Cursor Up Code.

27D8H ... Cursor Down Code.
27DAH ... Cursor Left Code.
27DCH ... Cursor Right Code.
27DEH ... Cursor Home Code.

27EOH ... Clear Screen Code.
27E2H ... Clear Line Code.

The locations from 27E4H through 27FFH can be used for the
Code Generation routines. Two bytes are reserved for each
simple code; the chronologically first byte of the code must
be kept in the high byte of the code word, the second, in the
low byte. (This can readily be achieved using a DW Assembly
Language directive, followed by the two codes in chronological
order.)

The layout of the operating system environment on the CGCS
computer is designed to accommodate cursor positioning rou-
tines for terminals with control codes not exceeding four
characters for positioning and two characters for line clear-

- 65 -

o) AR Tt P
(SNSRI COSOCMOANCMAM NN MMM M BRI AKISE AR ORI, "o’-H""H"ul0"0“&'*&'.';,M'N
ot :,u_'.,‘fa:%d‘ '“'."’.""'.':“l.‘,‘ "',‘.L..' «"lt'hh“i-"h‘.h'u a.‘qh“.ﬂ"'l."s",'s..’".'!‘,'l«‘!it"jc‘. UK YO R WO bty

L]

£] *
DU
SONDKY

)

ARV —

P

s

1
4
K)
L

.1

)
W)
e
) '.C

xS

3.3 ROM Resident Software

ing in the address space from 27DOH through 27FFH. Although
it is possible to provide longer cursor positioning code gene-
ration routines under RXISIS-II, this is not feasible for the
CGCS. Alternative cursor positioning routines must therefore
be kept in the memory range mentioned above in order to avoid
collisions with the CGCS.

With regard to speed requirements, the parameter passing con-
ventions of either PL/M or Fortran could not be maintained for
the Code Generation routines. They must therefore be written
in Assembly Language. The following parameters are required:

D ... Line number (21) (I) *)

E ... Column number (21) (I) *)

H+L . Pointer within the output string (I,0)
A ... Length of the positioning string (0) *)

Line and column numbers are required for the generation of the
Cursor Positioning Code only.

3.3.4.1.8 Break Detection

The Alternative Terminal Handler monitors the Break status of
the console I/0 line. A routine RE@BRK (which is provided by
the ROM resident code of RXIROM) is invoked whenever a break
was detected (or, more accurately, after the break condition
was terminated), provided an enable flag (RQENBK) which is
declared PUBLIC by the Terminal Handler was set (to OFFH).

3.3.4.1.9 Public Parameters

In addition to the entry exchanges, the following parameters
are declared PUBLIC by the Alternative Terminal Handler. They
may be accessed by user routines but should be handled with
great care. Some of them must by no means be changed by
external routines. The PUBLIC parameters are listed below;
the routine where they are declared PUBLIC is also noted.

RQDBEN (RQTHDI) Debug Enable Flag:
0 ... Cntl-C and Cntl-A are disabled.
OFFH .. Cntl-C and Cntl-A active.
"cntl-C" and "Cntl-A" can be locked out if the Alternative
Terminal Handler flag location RQDBEN (debug enable) is

- 66 =

al

LI MR 0™ S NI o 0T e e A R O MO S O A A A N A WA
‘-‘nfl‘,’-fl'y’.l'qJ‘(,l'c."‘. ., 'f"..:"h‘?h e, 0Tp 0! .I.‘:?'%,!ﬁ. -f' by Y] (e R UMD 0, L T L '0-"""lf""!“lf"s"'~‘.L'"!":!'.h."h"' R

[)

"~

T

ire

3.3 ROM Resident Software

5"

reset to a zero value. A non-zero value leaves them ac-
tive but inoperative if no task waits at RQDBUG.

)
-

RQDBMD (RQTHDI) Debug Mode Flag: *)
A 0 ... Input via RQDBUG.
OFFH .. Input via RQINPX.

- .
[S Iy Bs «ap by

IR RN

e)

The Debug Mode flag is set by the input task of the Alter-
¢ native Terminal Handler. It must not be modified by ex-
y ternal code but may be used to monitor the current input

:’.; mode (Regular or Debug Input).
Ry o
. T RQENBK (RQTHDI) Enable Break Detection Flag:
- 0 ... Break detection disabled.
o~ 7 OFFH .. Break detection enabled.
,:ii The routine RE@BRK is invoked if this flag is set and a
3 c Break condition is detected. Otherwise, the Break is ig-
- nored.
i
: RQTHMC (RQTHDI) Input Mode Changed Flag:
Y 0 ... No Input Mode change.
‘ n OFFH .. Input Mode changed from Debug
o to Reqular.
Z: o This flag is supplied as an indicator for operation mode
- changes of the Input Terminal Handler. It is set when
- RQTHDI changed back from Debug Mode (i.e., input via
. RQDBUG) to Regular Mode (i.e., input via RQINPX). Appli-
: ! cation tasks may monitor this flag in order to determine
o whether a restoration of a Fixed Screen output is neces-
AN sary (which is probably the case if a background task was
.o accessed via RQDBUG). The flag RQTHMC has to be reset by
A e the user code. Its status has no effect on the operation
: of the Alternative Terminal Handler.
5 REECHO (RQTHDO) Echo output entry exchange *)
o) ﬂ No messages should be sent to this exchange by user tasks!
- q
AR
g
[P
i; »
v
¢l
i - 67 -
VN
R |
e &
.
. L4
M b
]
%

¥t X LA Y
V g 0 DOOOM v, O) A&|.|.|.¢
't "'1' 'n X ‘l\ .'o 'u' " ’1'0‘0' ORI XN 4 ’..' ROCTXNXRN0 l'. 1' RUCOCDON '\' ‘;"' N -’ n“‘ "v' COCOON O

' da¥ e Ty 0 - = K g v “ Sl Al M ~ TRTTEOTRET AT TR RTRIRTRORT R R T

3
L
\f_\
ﬁ?: 3.3 ROM Resident Software
L,
;V? RR@TDS (RQTHDO) Terminal Output Task Descriptor *)
5;; R@EPDS (RQTHDO) Printer Output Task Descriptor *) i
;ﬁ These two PUBLIC variables are the start addresses of the |
o Task Descriptors of the two tasks which interface the Con- ' !
L sole (RQOUTX) and Printer (RQPRNT) Output Request exchan-
v ges to the output task (RQTHDO) proper. Suspending either
o of them locks out output via the corresponding exchange.
o The two tasks are suspended and resumed by the input of
o cntl-S and Cntl-Q (for console output) and of Cntl-E and
ﬁjﬁ cntl-F (for printer output) on the console, respectively.
.. .(W‘-.
. R@OENA (RQTHDO) Terminal Output Enable Flag *)
o 0 ... Output disabled.
e OFFH .. Output enabled.
™
S
B REPENA (RQTHDO) Printer Output Enable Flag *)
A 0 ... Output disabled.
!L, OFFH .. Output enabled.
- J‘
:ﬁj These two flags permit to enable and disable terminal and
>, printer output (via RQOUTX and RQPRNT), respectively.
fjg They should be modified externally only with great care
\

since they must be used in conjunction with enabling and
disabling the interface tasks (see above). Disabling is,
in general, done by resetting the appropriate flag, en-

- e S gy o

vl
:i‘ abling, by resuming the interface task after the flag was
e set. Direct suspending and resuming of the interface
s tasks is discouraged.
A
J
k- REOKIL (RQTHDO) Terminal Output Kill Flag.
",
e 0 ... Regular output.
o0 OFFH .. Output discarded.
L4
N
W
S REPKIL (RQTHDO) Printer Output Kill Flag.
[] 0 ... Regular output.
a z OFFH .. Output discarded.
O
o
$‘¢ The two Output Kill flags may be set or reset at any time.
QLS Output requests directed to RQOUTX and RQPRNT, respective-

ly, are simply ignored if they are set. They do not af-
Q. fect the system otherwise. The setting of the Output Kill
e flags is toggled upon each Cntl-O or Cntl-V input.

S e O N N IR L AN
..l..“i..'ﬂ."h‘.' c‘.‘ -.~’ .‘.h‘..l K4

O T T T T R T A e T T A A A N DN DS DD
RO W U R S NS KL AR MEAC R SN EIC MO I AU AU RS LS

s

AN Y - .

LY (Y QUM

ORI T O ’:f:‘.f~'.,-‘\‘\‘.fs';'t’a AN

Tagb gl ie Wy vg Ty 0
Bt AL 'a’. ORDORAK

THEFITNTFT Iy TETvrLsUveiwirwi v vy

3.3 ROM Resident Software

RE@INLN (RQTHDO) Input line number *)

0 ... Scrolled output.
<>0 ... Input line number in Fixed Screen
mode.

The input line number/flag held in this variable may be
read only by external routines.

*) Do not attempt to modify these locations!

3.3.4.2 User Interface of the Alternative Terminal Handler

The line input feature of the Alternative Terminal Handler has
been improved significantly in user-friendliness, compared to
the iRMX-80 Terminal Handlers. 1In general, the input line
echo on the console CRT screen corresponds exactly to the con-
tents of the input buffer. A line entered on the console is
submitted to the system only after the line was terminated
with one of four Line Termination Codes. Until that happened,
editing is possible via two Editing Codes.

The length of an input line is limited to 80 characters, i.e.,
to the width of a CRT screen. Due to input prompt characters
or strings, the line may, however, extend over two lines on
the console screen. (The console terminal should be set to an
Auto New Line Enable mode if possible.)

A beep is output if the user tries to enter data beyond the
available buffer length. Type-ahead is available for up to 80
characters which may be entered before an input line is re-
quested by the system. Since the type-ahead input is echoed
on the CRT screen only when it is requested, it has to be en-
tered blindly. Unless a type-ahead line was terminated with a
Line Termination Code, it can be edited arbitrarily, either
hefore or after it was echoed. Note that Cntl-X deletes the
type-ahead buffer completely, i.e., even type-ahead lines
which were already terminated. A warning beep is output if
the operator tries to exceed the type-ahead buffer length.

In Fixed Screen Mode, the input line is displayed at a fixed
location on the screen. Its display area has therefore to be
cleared periodically. This is done by the Alternative Ter-
minal Handler after an input request message was received.
The previous input line is thus displayed even after it was
entered and passed on to the system by the Alternative Ter-
minal Handler; the cursor is, however, moved to the extreme
left end of the input line. This behavior was required in

- 69 -

) 350 ORI)y
X ! oi.'u‘. Tttt ‘l' .‘o' OO '-'. RN 'uh‘-‘ UL

I‘. (\ .l. .t. »,]

(L
"" » 4.1"‘

Fﬁﬂf
- ’- ,- ,l

14,

;-".;.}’o

Y f 3.3 ROM Resident Software
RV,

3‘_ order to permit complete input lines which were already ter-
{ ¢ minated to be displayed in type-ahead mode. After an input
™ request was received, the input area is cleared, the input
s prompt string is output if applicable, and the cursor is moved
~l to the first location on the screen available for the input

:: line echo unless there was already input in the type-ahead
;. buffer, which is otherwise written to the screen with the
) cursor positioned after its end.

o

Yo The Alternative Terminal Handler accepts 16 control characters

! 3 with a special meaning. Any such character which is input on \
Aﬂq the Console Terminal (and which is not caught by a single

@_ character input request beforehand) triggers the appropriate |
" action listed below. Other control characters are rejected |
e unless they are preceded by Cntl-P.

»

G |
o (1) Line Termination Codes:

>,

o The following codes terminate an input line and advance 1
!2? the input buffer to the routine requesting input. 1In f
A general, the termination characters are appended to the
- input data unless there is no more enough room in the |
.- buffer. |
A 5
JON CR Carriage Return: Converted to a CR-LF pair and
' " written to the buffer and echoed as CR-LF.

'.B_‘J
ot LF Line Feed: Treated identically to Carriage Re-
N turn.
0%
% ESC Escape: Appended to the buffer, echoed as "$"+
D) CR-LF (no "$" if entered in type-ahead mode).
A (Note that Escape is used as an input line clear-
;%g. ing command within the CGCS.)
\#“-‘
;}Q Cntl-Z Control-Z: Deletes all buffer contents, transmits
ATE an empty buffer. Echoed as a CR-LF pair. 1In
® type~-ahead mode, Cntl-Z may be used to delete the
g;? last, yet unterminated, line entered, without
pi: affecting the contents of preceding input 1lines.
e (Due to system timing problems which could be
)mf overcome only with a great expenditure of code
and/or processing time, an input line entered into
Q.- the type-ahead buffer immediately after one or
wv_ more Cntl-Z characters may not be echoed although
- it is regularly advanced to the task requesting

nY input.) Control-z is interpreted as a program
'ﬁg termination code by some auxiliary programs (e.g.,
iy o the *Macro Command Editor) running uwmder* RXISIS-II.

9.,
»:;::‘ - 70 -

N e . SN T "y pted TR " C NS DN AN ot
’x.:!n "'l'!.'b‘,.'l?:’!fg‘},o. .0,‘;0”:'?'.0.. ,.’2‘1. r“"‘!’.t’. % u'i- ’!‘I‘!‘l'p‘c‘-.l‘:\'!.l'.'\"'l'!‘:'!.ﬂ,'-'.'»‘u-1 \‘T'!"‘l'!‘\‘?‘u ,'!.. LA :hﬂ l‘.\?.ls‘d,‘.0‘;'.1";0!’,0‘\1, :\‘"'-7'

NN

- e oy
W r I Y,

o on o me o

q
&
i
t

$5.%;

<

"

"
o

555

o

4
b

(2) Line Editing Codes:

(3)

-y CELACL A A A A At a4 B h avd a-d otk a3 ath oSl ol il obl oll SRR JECall bl ol ol sl olEC R ol aits |

3.3 ROM Resident Software

RO Rubout: Deletes the last character in the input
buffer and on the screen. (It is, however, impos-
sible to remove a character in the last column of
the CRT screen from the display if the terminal
used does not permit a "scroll-back" of the cursor
from the leftmost position of a line into the last
position of the preceding line. Nevertheless, the
erased character is removed from the input buffer;

a correct display can be obtained with Cntl-R.)

Cntl-X Control-X: Deletes the buffer and the type-ahead
buffer completely. Appends a "#" to the input
line echo and advances to the next line on the
screen (not in type-ahead mode).

Miscellaneous Control Codes:

Cntl-P Control-P: The character following Cntl-P is in-
put literally even if it is a control character.

Cntl-R Control-R: Restores the input line echo on the
console CRT. No visible effect if input line does
not extend over two physical CRT screen lines.
Can be used if characters were deleted in an input
line extending over two CRT lines and the cursor
did not move up to the upper echo line.

Cntl-S Control-S: Suspends regular console output. The
tasks requesting regular output are halted. Does
not affect output sent to the RQALRM exchange.
Suspending output already suspended has no effect.

Cntl-Q Control-Q: Resumes output suspended with Cntl-S.
Resuming output not suspended has no effect.

Cntl-0 Control-0: Regular output is deleted if Cntl-0O
was entered. The routines or tasks generating
output keep running; their output is lost. Regu-
lar output can be restored if Cntl-0O is entered a
second time.

Cntl-E Control-E: Suspends printer output. Tasks re-
questing printer output are halted. Suspending
printer output which is already suspended has no
effect.

- 71 -

Iy - oK AT T - Yt et e T Ao Ny \ LY 30 .) . .
’.‘f’.'-‘.‘ﬂ!'y‘.‘t’!‘:”‘-"‘v’!’l‘»'ﬂ,‘u‘t‘r""'. n"‘c A B . 'I o l‘..r ;’f } } LRSI RN ! .n“'!‘l'- "?"c,‘ !."l‘.“t‘"‘“ x‘m"m A, "-"l" AOSCAG

TLE AT N RE T W Ny NS L LN WL LWLy " v W \‘T

§j 3.3 ROM Resident Software
e Cntl-F Control-F: Resumes printer output suspended with
; Cntl-E. Resuming output not suspended has no ef-
N fect.

s,

vy Cntl-V Control-v: Printer output is deleted if Cntl-V
- was entered. Tasks requesting printer output keep
o running; their output is lost. Printer output can

be resumed if Cntl-V is entered a second time.

4 Ccntl-C Control-C: This control is only effective if the
{ Debug Enable Flag RQDBEN is set, if the reqular
- input exchange RQINPX is active, and if a request
h message waits at RQDBUG. In this case, all con-
sole input is directed to the request messages
. waiting at RQDBUG, and RQINPX is no more serviced.
N In addition, a message is sent to the exchange
v RQWAKE unless there is a message already waiting
ﬁ: there. The regqular input mode is restored and the
o Mode Changed Flag RQTHMC set to OFFH if a message
Y of LASTSRD$TYPE (10) is sent to RQDBUG. The type-
d ahead buffer is cleared. (Control-C is used by
& the iRMX-80 Debugger, and by iRMX-80 BASIC. It
- has no effect whatsoever in the CGCS.)
[
Y cntl-A Control-A: cancels the effect of Cntl-C; all

input is directed to the regular input exchange
\ RQINPX. Cntl-A is only active if RQDBEN is set
and RQINPX was not serviced (i.e., in Debug mode).
- The Mode Changed Flag RQTHMC is set to OFFH, and
. the type-ahead buffer is cleared. (Control-A is
" used in conjunction with the iRMX-80 Debugger
b only; it has no effect whatsocever in the CGCS.)

The Terminal Handler indicates console input transmission er-

-,
iy rors by echoing special characters, accompanied by a beep.
" The erroneous character is discarded, and the following char-
,; acters are echoed:
“>
FRAMING OVERRUN PARITY
" ERROR ERROR ERROR
’ 4 - - +
7 ? . * :
z ¥, > - + +
.! = + - -
Q < + - +
) ’o -+ “+ -
: i’ + + +
WS
' ‘\:
: AN
"y - 72 - |
o
I
o
¢

\/
. WA -4 Y W > % AN SRR AY W RO IR) ;
?:::.:.."!t“h'.l '.If' * ":f"'.‘.:‘. U D _‘1."-" Wt AN T TR, .:?5”.0&..:;:,0.0 oty Ay .."m O it M WO A M RN M J ML WY l‘!‘o‘!’

WL VTP IV U TR TUR LT TN AT TR TR A TRT R TR E TR N TN T e ﬂ"““"“v‘\"b“"'l{‘T

3.3 ROM Resident Software

3.3.5 The Generic Loader Task

The Generic Loader Task RQLOAD is designed for a twofold ap-
plication:

(a) as a Bootloader to load entire iRMX-80 based systems into
RAM, and

(b) as a standard Loader during the regqular operation of an
iRMX-80 system.

The Generic Loader permits, in contrast to the iRMX-80 Boot-
loader, to specify a device and filename at runtime, which al-
lows to use 1t as a standard Loader. Similar to the iRMX-80
Bootloader, and unlike the iRMX-80 standard Loader task LOAD,
it does not require the support by the Directory Services task
DIRSVC which keeps its code sufficiently short to make it fit
into a Bootloader module.

Several functions were provided in addition to those supported
by the iRMX-80 task LOAD:

* It is possible to protect memory areas by setting low and
high boundaries for the Loader's operations. Any attempt
to lcad code into locations with an address less than the
low boundary or greater than the high boundary terminates
the loading operation and sets the STATUS field of the re-
quest message to a corresponding error value.

* The Loader accepts only absolute object code files with all

EXTERNAL references satisfied. It is therefore impossible
to load code inadvertently which is not suited for execu-
tion.

* The Loader can control the execution of other routines.
Prior to the actual loading operation, an EXTERNAL routine
R@LLOK is invoked (which is part of RXIROM in the RXISIS-I1I
environment). This routine disables entry to the Monitor
which is otherwise permitted to use the Loader buffer as
scratch memory. Correspondingly, a routine R@LREL is call-
ed when the Loader is finished and its buffer can be used
again by the Monitor.

* A recovery procedure for soft disk errors improves the re-
liability of the loading operations. In case of a .=
read error, RQLOAD moves the head out one track, re-r. -
tions it to the correct track, and attempts toc read a1
If reading fails again, it steps the head cne trai. b+ * o
the center of the disk, back again, and tries 131y - -

- 71 -

Wl 70 T .y ® A VS PRI PR DL LTS I L e e
RSt O S SRR LT GO LGN ARG

W

- —— WETTIFTAFINTTE TS S TSN T TEN TR FRrTF T T rFreEgTFrTrsFrTE STy s ye e YT TR T T TR LW Y e iTe Y Wt

3.3 ROM Resident Software

tain data. This cycle is repeated up to five times; only
if the error persists, a disk error message is issued.

The interface between the Generic Loader and the surrounding
system is compatible with the iRMX-80 LOAD task. The Loader
is invoked by a request message sent to its entry exchange
RQLDX; the message must have the following structure:

0
LINK
2
LENGTH = 17
4
TYPE = 19
5
HOME EXCHANGE (NOT USED)
7
RESPONSE EXCHANGE
9
STATUS
11
FILE NAME POINTER
13
ADDRESS BIAS
15
ENTRY POINT
17

The calling task must set the LENGTH, TYPE and RESPONSE EX-
CHANGE fields, and, in addition, the FILE NAME POINTER and
ADDRESS BIAS locations. FILE NAME POINTER must point to an
iRMX~-80 compatible 1l-byte File Name Block; ADDRESS BIAS holds
a value which is added to the loading start address specified
by the disk file loaded (modulo 64K). RQLOAD returns two STA-
TUS bytes and, in ENTRY POINT, a start address if the module
loaded was a main module, or otherwise zero. The STATUS value
returned corresponds to ISIS-II and iRMX-80 standards (compare
Appendix 4).

The Loader task RQLOAD requires, in addition to the request
message, parameters in two memory locations declared PUBLIC by
RQLOAD:

RQLLBD Two-byte (ADDRESS) variable holding the Low Loader
Boundary.

RQHLBD Two-byte (ADDRESS) variable holding the High Load-
er Boundary.

- 74 -

P P TP TS N I Y A AT R
Ry SR S AT SRR

OUDAIN OB
‘.3 J’..l‘,.!’g ".“:“‘m‘?‘l".t

') DDA
Tttty gty OGN

) * ;‘:
«4 {,
aro
g o
"y , 3.3 ROM Resident Software
I]
‘m¢ Loading is only permitted to addresses between and including
ﬂ the values stored in RQLLBD and RQHLBD. These boundaries may
Y = be changed at any time provided the Loader is not active while
I they are being changed. The default values set by the Load-
o ?(er's initialization sequence are 0001H for RQLLBD, and OFFFFH
N for RQHLBD. It is therefore possible to load to the entire

L

1%& 64K address range from 0001lH through OFFFFH, with the excep-
tion of location 0000H (which is used for ROM anyhow and can
therefore not reasonably be included in a loading operation).

1-
-
ol

X

The Loader uses a 256 byte (100H) buffer which must be kept in

='
2

S Y controller accessible RAM, and which may be used by other
A tasks or routines as scratch memory while the Loader is not

active. (No permanently required data can be stored there.)
WICEEN In the CGCS controller computer, the Loader buffer is allocat-
':5 ﬁ: ed in the top memory page, from address OFFFOH through OFFFFH.

]

‘ﬁ} Particularly for bootloaded systems, it is important to have
Wit ﬁ as much memory as possible available for the code to be load-
°® ed. Still, some memory is required for the code and data
2 structures of the task requesting the Loader's operations. It
g2 is possible, though, to locate at least data in an area which
D b may be overwritten by the loaded code. This applies, for ex-
b2, ample, to the iRMX-80 File Name Block holding the name of the
K file to be loaded. This File Name Block can be kept anywhere

r ﬁ in memory except in the lower 128 bytes of the Loader buffer.
In general, all information which is no more needed once the

AR

B:f new file was loaded can be kept in memory which may be over-
OGN written.

{‘\.-r ';-:'

;)‘,. g 3.3.6 Ent Points Into ROM Resjident Code

"t"]

! . .

:mﬂ . In general, the RXISIS-II Initialization Code and the RXISIS-
i:%' ’,‘q II Monitor (plus Confidence Test) are entered via vectors in
33€_x the 8080 Restart area (compare Appendix 3). The corresponding
~ addresses may be called or jumped to by user code, or the user
o i code may issue the proper RST instruction. The following
Qg’in entry points are available:

o,

%”» RST 0 O0OOOH Monitor System Reset Entry Point.

X3
S

RST 1 0008H RXISIS-II Initialization and Re-Boot.

RST 2 0010H Monitor Main (Breakpoint) Entry Point:
Register contents are saved; PC is set to
contents of Top of Stack.

Iain'y

OO
.'l't‘:'p'o'-'-

9,
I‘:‘.'w‘l‘b

EWN U UWNLUEURBUNF T UTETWITHUT LTS LTS LS LTS VTLUWITEITW I ™ T " " "W I "W TITF I " "W i7"l 17s i ey m v w \.—W

3.3 ROM Resident Software

RST 3 0018H Monitor Auxiliary Entry Point; see separ-
ate Table.

A set of parameters is required if the Monitor is entered via
its Auxiliary Entry Point (RST 3). The value passed in regis-
ter C (the first parameter of a call from PL/M) determines the
Monitor function invoked, while the register pair D+E holds a
parameter required for this function. (From PL/M, this param-
eter is passed as the second in a procedure call.)

The following switch parameters are permitted for C (all other
values cause an error message):

cC=0 Submit Control to the Monitor: This entry point is
used by the DEBUG switch under RXISIS-II. All proces-
sor registers, except the stackpointer and the program
counter, are reset to zero. The stackpointer is set to
the Monitor's own stack, and the program counter to
the value passed in D+E.

cC =1 Error Entry Point: This entry point is invoked by
RXISIS-II in the case of a fatal (disk) error. The
contents of the register pair D+E are interpreted as
an error code (corresponding to the ISIS-II and RMX-80
error codes, compare Appendix 4). An error message is
generated with an extensive error identification text
if the error code is a more common one; control is
subsequently submitted to the Monitor via its Reset
Entry sequence. The Exit ("E") command of the Monitor
is therefore inoperative; it is the responsibility of
a system which calls this entry point to close all
open files prior to the Mon. »r call.

3.3.7 confiquration of the RXISIS-II System ROM

Due to the bank-switched operation of the system ROM, its
configuration is not entirely straightforward. Essentially,
the following steps are required for the preparation of the
ROM resident software:

(1) The contents of both ROM banks have to be linked together
separately. Bank 0 contains the Confidence Test and the
Monitor, Bank 1, the iRMX-80 Nucleus, the Alternative
Terminal Handler, the gencric Loader, and the ROM resident
part of RXISIS~II, RXIROM.

A special treatment is required for the preparation of the
Confidence Test routines: The ROM checksum verification

- 76 -

ARG ; (MO W T NN S S AN O OB N DA DO OB OO
, '.'&l't.l" "0"'\?“!"'!!"!’",I.“‘:U‘ieﬁ'.& ’;‘l‘u:"a:“'-."»?"»01'-"‘-"'. et abat el We AN i 1,

e

0

P

WY

& v,

"J

- v
Eld

Pl

"T

.
PR

m -

> v
"

. '5-_; AL wﬁiﬁ\i;i:‘\&%\im

3.3 ROM Resident Software

sequence which is part of the Confidence Test in Bank 0
can obviously operate on the ROM bank only which contains
the ROM test code, i.e., on Bank 0. In order to permit
testing of ROM Bank 1, a duplicate of the ROM test routine
is copied into RAM at execution time (after the RAM was
tested) from where it can access ROM Bank 1. This dupli-
cate routine must therefore be configured for an execution
in RAM (the addresses between 3000H and 30FFH are reserved
for this purpose) but moved into the ROM address range
(from OFOOH through OFFFH) during program configuration.
This can be accomplished by means of an interactive Object
File Editor utility (OBEDIT) which has been specially de-
signed for the configuration of the RXISIS-II system ROM.

The iRMX-80 based routines in ROM Page 1 can be configured
with the help of Intel's Interactive Configurator Utility
ICU-80. 1ICU-80 generates an iRMX-80 Configuration Module
and a Create Table (which hold information about the tasks
and exchanges in the iRMX-80 system); the SUBMIT (batch)
file created by ICU-80 requires some slight modifications,
though, in order to accommodate the specific features of
the RXISIS~-II environment.

(2) The modules holding the contents of the two ROM banks have
to be combined separately with code which is common for
both banks. This applies to the bank switching sequences
in the area of the 8085 Restart vectors (addresses 0000H
through 003FH), and to the Monitor exit sequence which re-
activates ROM Bank 1; this sequence is located at the
high-address end of the ROM area (addresses 1FF8H through
1FFFH). Since ROM page switching is done by ROM resident
code, it is essential that the page switching sequences
are provided in corresponding addresses of either ROM bank
in order to guarantee a correct continuation of the pro-
gram code in the new ROM page after a bank switch.

(3) The contents of either ROM page are subsequently submitted
to a checksum calculation; two two-byte checksums, each
covering 4 KBytes of ROM, are deposited (by OBEDIT) at the
addresses 0020H through 0023H.

(4) ROM page switching is effected by controlling the most
significant address bit of the ROM chips with the SOD
output of the CPU. Therefore, the first ROM chip holds
the lowest 2 KBytes of Bank 0 in its lower half, and the
lowest 2 KBytes of Bank 1 in its upper half, and so on.
The two modules with the contents of ROM Banks 0 and 1,
respectively, have therefore to be "sliced" into four
sections of 2 KBytes each, and interleaved properly in
order to result in the memory pattern shown in Fig. 8.

- 77 -

o
w
-
- -

BT~ NPT T
SRR
o

5

T
A%

o
TRSAANNS

sors
A
{}

}-
A

R,
EW_K)

§
n .
'i"\"‘b‘ ety

TWTVUTTRTIN TNYW mmm

3.3 ROM Resident Software

This procedure can be done again with the Object File

Editor OBEDIT.

The resulting disk file is, finally,

programmed into the four 2732A EPROMs of the CGCS com-

puter.

Fig. 8:

Q g X 0) 0 S ORI
I e T e e SR

2000H ROM. CONTENTS

w :7}._—_—-L:ff? T
1000H 3800H ROM 3
::] 2800H ROM 2
N B n
N == N

Configuration of the RXISIS-II system ROM.

- 78 =

\ 8 4 JO)
T e it ety St

(' 3.4 RXISIS-II
3.4 RXISIS-IT

H
»
=
L4

3.4. e eration of RXISIS-

YS!

RXISIS-II is an emulator for Intel's operating system ISIS-II
(Intel System Implementation Supervisor) executed under In-
tel's iRMX-80 Real Time Multi-Tasking Executive for 8080/85
I m Processors on Intel's OEM Single Board Computer hardware. 1In

RS general, RXISIS-II emulates the most important features of

" ISIS-II, and permits programs written for use under ISIS-II to
run in a real-time environment. File notation and handling is
e identical for both systems, and files created under either
S system are compatible to the other. Some restrictions apply
to the emulation of ISIS-II, though, since RXISIS-II is mainly

] intended as an auxiliary software package for genuine real-
&: time process controllers where many development system orient-
ed functions of ISIS-II are hardly required. This applies, in

o particular, to the possibility of batch processing with SUBMIT

g ;g files. No features which support the re-routing of console

input to a disk file have been implemented with RXISIS-II; it
A is, therefore, not possible to execute SUBMIT command files
T« L under RXISIS-II.

Additional restrictions apply to the size of memory available
o to programs executed under RXISIS-II (compare Fig. 7): While
' i the top of user accessible memory is at OF6BFH under ISIS-II,
it had to be lowered to OC7FFH in order to accommodate the
RXISIS-II code; with the iRMX-80 Debugger loaded, MEMTOP is
- }I only at 92FFH. On the other hand, the program space available

e for programs under RXISIS-II starts already at 2800H rather
than above the ISIS-II file buffers, which is typically at
| 3680H. In order to fully utilize the available RAM, specially
5 relocated versions of some programs may therefore be used
under RXISIS-II. Several reasons demanded that the above
e memory mapping was chosen for RXISIS-II:
4
b (a) The disk I/0 buffers internally used by RXISIS-II must be
located in Multibus accessible RAM, i.e., at addresses
3 above 4000H.
"
- (b) RXISIS-II contains numerous iRMX-80 library routines which

can hardly be subdivided in order to fill only certain
memory locations, e.g., the area between 2800H and 3680H.

(c) RXISIS-II must provide not only the subroutine entry
points of ISIS-II but also of the ISIS-II Monitor, which
implies that addresses around OF800H had to be reserved
for entry points.

- 79 -

DN OO OB AN DADGONOBOA S M W !
'a“.'«.','-'!.l.,'.«..‘-“‘.ﬂ.k'n'.h‘,h‘ UL MR XN ‘c' 2]

DO
.‘.".'0"'."‘.'."' . LT\

(] Q (] A\ \ .> D 1 »
'?-."-."::"-3"-:"5-"e?"».‘!tt‘. '-‘ft:‘ftf‘?n.".é'.",‘fn'fl."«‘ s

W - Mhe Al b el 2o Al el ok Bk ded ol A a b ah A ALl il Al Al A ol abh oMb abs ol oRi oM odd Bt ol afac Jiat Aas s et Aac Bl fal ol Aal At Ao Aol
a::'c
Y
@
NS
T 3.4 RXISIS-II
N
"‘ Since RXISIS-II is essentially considered a software tool,
(providing additional disk file handling capability for genuine
) real-time application systems, it is designed to be eventually
Qbﬁ overwritten and replaced by arbitrary real-time applications
N running under iRMX-80. Such application code is bootloaded
. from disk similar to RXISIS-II, and it may freely use the ROM
*t.‘ resident routines of RXISIS-II. 1In general, the system always
{5 comes up under RXISIS-II; as far as the user is concerned,
iy however, other real-time application systems can be invoked
o from RXISIS-II at any time just like ordinary ISIS-II pro-
Y grams.
*\v -
(e Being based on the ROM environment described in the previous
) chapter, RXISIS-II is designed to make ample use not only of
. the ROM resident iRMX-80 routines but also of the Monitor. For
o high-level debugging purposes, the iRMX-80 Active Debugger may
:xj be loaded into the RXISIS-II system at any time; it becomes
N resident and can be activated and used as detailed in Intel's
TR iRMX-80 User's Guide. Although the memory space available for
- utility and user routines is significantly restricted in this
L case due to the memory requirements of the Debugger, this
'jj feature adds powerful debugging aids.
<
i In order to supplement the utility routines available under
NN RXISIS-II, and in addition to ISIS-II BASIC, a special iRMX-
M 80-based version of BASIC is available. This BASIC inter-
. preter can be invoked from RXISIS-II but does not utilize the
Ao RAM resident RXISIS-II routines. Indeed, it is an entirely
2& independent real-time system. This approach permits the most
A economic use of system memory and provides the iRMX-80-based
jﬁ BASIC with about 6.5 Kbytes more of free program and data
) storage space than its ISIS-II counterpart under RXISIS-II.
fl, RXISIS-II is activated whenever a disk which contains its sys-
N tem files - RXISIS.BIN, RXISIS.CLI, and RXISIS.PSC - is in-
'ﬁ» stalled in drive 0, and an “E" or "Q" command is executed from
e, the Monitor, or when "Return" is pressed after the initializa-
L tion sequence after a Reset. RXISIS-II is normally not re-
e loaded when a program executed under its control terminates.
el RXISIS-II displays a sign-on message and loads its Command
Vi Line Interpreter from the file RXISIS.CLI. (The Command Line
Zﬂg Interpreter shares memory with ISIS-II application programs,
P which makes it necessary to re-load it each time a program
N terminates.) RXISIS-1I displays a hyphen ("-") as a prompt,
Q. similar to ISIS-II, and waits for a command to be entered.
o The ccmmand line editing and control codes listed in chapter
e 3.3.4.2 or in Appendix 5 can be used under RXISIS-II.
v
‘\ﬁ The execution of ISIS-II software under RXISIS-II is identical
L\ to ISIS-II. The reader may refer to Intel's "ISIS-II User's
R - 80 -
e
P2
W
. .
*’.'
:F:

.l
SN 500 e SO AR ™ IO N Y | B I o p =) N OV A Y Y, o™ o
§%, 9 -f' N .., . . «‘!!'-.-, L l.lé"l. o ':!‘.l!"v. '|. Y Jr e A%y LN 'n. N, ',I'-, % "n.l'-"- », ":. y 'l. !t. ‘., y .|‘l. ‘l

g ™, ())
D)
:“'0."0,"-.‘,0. OO Y

..(.'A‘..‘

3.4 RXISIS-II

Guide" to obtain full information. With only a few excep-
tions, RXISIS-II commands refer to the names of disk files
which have to be loaded and executed. In contrast to ISIS-II,
however, the names of these files are not identical to the
- commands to be entered by the operator; a file name extension
O is used to indicate to RXISIS-II the type of the program, and
o~ the way it is to be executed. Programs with the file name
extension ".RXI" are qualified to run in a genuine real-time
environment, which implies certain additional features which
- are not available under ISIS-II, such as type-ahead. The
L/ extension ".RXR" indicates that the program may be executed
) / under RXISIS-II, but real-time operation is not permitted. 1In
some cases, this is due to the insufficient stack size of pro-
grams which were only available as object code. Since inter-
rupts may result in a stack overflow with these programs, all
interrupts must be disabled while the actual program code is
executed, and they may only be enabled during calls to RXISIS-
ITI system routines. In addition, some programs like Intel's
CRT-based full-screen editor CREDIT or the ISIS-II version of
BASIC use input handlers of their own which are based upon
single character console input rather than line-based input.
It is essential that type-ahead is disabled for such programs
to guarantee their proper operation. The ".RXI"™ and ".RXR"
extensions are automatically appended to the user specified
program name by the RXISIS-II Command Line Interpreter; nei-
ther of them need therefore be specified by the user.

r—p
=

£y

%

s
AN

-

<v~
MR)
w9

NONACNPS ;.'-'Q'J"

L

e
.

=

Each command (with the exception of "@" and "DEBUG") is, in-
) deed, interpreted by RXISIS-II as the name of a program file.
o If, for example, the user entered "MYPROG", RXISIS-II first
searches for a file "MYPROG.RXI". If RXISIS-II finds such a
file, it loads and executes it. Otherwise, RXISIS-II con-
tinues with a search for "MYPROG.RXR". A message indicating
that type-ahead is disabled is output if "MYPROG.RXR" has been

" - [-
22 TaTN T,

(]
e

L

7 found and loaded. If this file does not exist either, RXISIS-

vl e II scans the disk directory for a file "MYPROG". Since a file

Y without an ".RXI" or ".RXR" extension may be incompatible with

< RXISIS-II, great care must be taken in executing it; such pro-

_. ta grams are therefore not automatically executed after loading

A ?v but control is vectored to the Monitor. The user may, in this

e case, choose whether he wants the program executed (with the

: Monitor's "G(o)" command), or whether he prefers to exit back

N to RXISIS-II with the Monitor's "E(xit)" or "Q(uit)" commands.
[(iRMX-80 and RXISIS-II system code and data in ROM are pro-

q tected from being overwritten by incompatible program code.)

i x Different files “MYPROG.RXI", "MYPROG.RXR", and "“MYPROG" may

{ o exist in parallel on the same disk. By default, "MYPROG.RXI"

by~ will be executed. It is possible, however, to load and run
. also the other two programs if "MYPROG.RXR" and "MYPROG." are

'z ﬁ' invoked, respectively. (The trailing period in the "MYPROG."
'

? - 81 -

A

S

'

Lg]

L

': g

o
A
'. o W 0 2PV

e YW LW T T YN W O T W T W TP I W VW T W T W T W T W W T T AT TR TR T TR TR L AW LT T T T T TR LT T LT LT LT LT L e T e LT LT e LT L L LR LY R LR TR

4y
LSV
)
a8
L)
e
QW
D
l’.* 3.4 RXISIS-II
$1
? "‘ .
NN command would constitute a command error under ISIS-II. Under
(q RXISIS-II, in contrast, it is used to explicitly access pro-
R gram files without a file name extension.) In both cases,
NN control will be vectored to the Monitor after the respective
o program was loaded.
"\.'P\.
}Q File and device names may be entered in upper- or lowercase
V) characters.
‘l't
o
o
fotd 3.4.1.1 Available Devices
B The following device names are permitted under RXISIS-II:
pﬂc ¢:FO: ... Disk Drive #0: This drive must contain a valid
P RXISIS-II system disk, i.e., a disk containing the
~ . files RXISIS.BIN, RXISIS.CLI, and RXISIS.PSC. The
e device specification ":F0:" is assumed by default; it
'6* may be omitted.
;;:j :Fl: ... Disk Drive #1
_ti? :CI: ... Console Terminal Input
"
;y :VI: ... Console Terminal Input; treated identically to :CI:
'iﬁ{ :CO: ... Console Terminal Output
i ag
'}} :VO: ... Console Terminal Output; treated identically to :CO:
N
ﬂ; :LP: ... Line Printer
'}5‘ :TO: ... Line Printer; treated identically to :LP:
ety
"g :BB: ... Byte Bucket: Pseudo output device for dummy output
s operations
e,
®
g
:%R: 3.4.1. Available Programs and Functions Under RXISIS-I
I
W
"ﬁ Programs which are not included in the following list are not
'ﬁg necessarily RXISIS-II incompatible. The programs listed below
@ have, however, been successfully tested under RXISIS-II.
N
P
jﬁ Some of these programs (e.g., CREDIT or BASICI) use single
e character rather than line based input. Characters which are
jq entered while these programs are not ready to accept input are
Focr added into the type-ahead buffer of the Terminal Handler which
.,
"

G - 82 -

0000000
bt 0NN ‘-‘ vt ettt el haive WO N N N Lo At Nttt Bt et ety ahGn e il

:
3 3.4 RXISIS-II
"
b may eventually overflow, causing an error beep. During some
(n operation sequences, e.g., during data output in ISIS-II BASIC
)y - or while CREDIT refreshes a CRT screen page, the program oper-
‘ ation is halted if any key on the console terminal is presseqd,
A Q: and resumed only after any key is pressed again. The program
e operation proper is, however, not affected by such effects.
l
\
X
v 3.4.1.2.1 Intel Supplied Utility and Development Software
b The following Intel supplied utility and software development
W, programs have been tested under RXISIS-II and were found to be
fully compatible. For more information, please refer to In-
.~ tel's "ISIS-II User's Guide" (unless otherwise specified).
j = ATTRIB File Attribute Display and Modification Program.
Lo
. 5 COPY File Copying Program.
{ CREDIT CRT Based Text Editor (see Intel's "ISIS-II CREDIT
W CRT Based Text Editor User's Guide"): a special
s CREDIT.MAC file is generally required which cus-
. tomizes CREDIT for the CRT terminal used. No
f o type-ahead can be used with CREDIT.
_, n DELETE File Deleting Program.
- DIR Disk Directory Display Program.
; LIB Library Manager Program.
; ' LINK Program Module Linker Program.
g
" LOCATE Program Module Locator Program.
L - RENAME Disk File Renaming Program.
.
‘ —
[o
'{'* 3.4.1.2.2 Other Utility Software
f N The following additional utility routines which were original-
4D ly written to extend the capabilities of Intellec Development
¢ Systems running under ISIS-II were adapted for RXISIS-II.
A Some of these programs were newly configured for RXISIS-II;
e the ".RXI"™ versions of these programs cannot be executed under
- ISIS~II since they use memory below the ISIS-II buffer area.
' For more information about the programs listed below, refer to
>, Appendix 6 of this documentation, unless otherwise stated.
‘ 11 |
\
" - 83 -
0 o~ i
S ERY \
» .'
K
o
e !
. A"

bty ¥
O'C. DX

¥ .lm '-).'.\ .I':"}.' J'.'.f\ o~ H,'\- o~ ‘.F"-}'l'.::}'-).\;fﬁ;.\) ‘-;’. e '-""-J.“-" '\'«\' '\;"\-' ‘\-}'u}"-;,* ')."‘ \;‘}'\-' N % M {’\ 0
[P K M o MU PN " e Vo i P B ! L A Nal i S N Ad BABANRA AL LA Kby Nl R . L M X

3.4 RXISIS-IT

ADOC Text Formatting Program (see Text Formatting
Program "ADOC" Reference Manual, K. Riedling,
February 1981).

ATTSET File Attribute Modification Program.
CMPDSK Disk Comparison Program.

COMP Disk File Comparison Program.

COPYCP Disk File Copying and Compare Program.
CPYDSK Disk Copying Program.

CREATE File Creation Program.

DIRFIL Disk Directory Formatting Program.

DISOBJ Object File Display Program (no documentation
available).

HEXCHK Hexadecimal File Dump Program.
LIST File Listing Generation Program.

SHOW File Display Program.

3.4.1.2.3 Programming Languages Under RXISIS-II

Although arbitrary program source files may be generated or
edited under RXISIS-II (with CREDIT), the use of compilers is,
unfortunately, prohibited by the restricted memory size. It
is possible, though, to execute Intel's 8080/85 Macro Assenm-
bler ASM80 (and, in turn, to link and locate program modules
with the LINK and LOCATE programs). ASM80 could, in fact, be
executed under RXISIS-II with full real-time capabilities
(i.e., with the ".RXI" extension); still, the Cross Reference
generation overlay ASXREF has insufficient stack resources,
which requires that ASM80 be executed in the Restricted Mode
(i.e., without type-ahead) if the XREF switch is used.

There are two versions of Intel BASIC interpreters available
for use under RXISIS-II: The ISIS-II BASIC Interpreter can be
invoked with "BASICI":; it offers all functions known from
ISIS-II but a relatively limited workspace area (11848 bytes).
An iRMX-80 based BASIC can be loaded with "BASIC"; its work-
space 1is larger (18268 bytes) but it does not support some
functions of the ISIS-II BASIC (e.g., program line editing).

- 84 -

D ' 4 "y B L4 LA g o, o - - N e -a= -
(] G X/ LY N Sl Sek Nt 0 ‘ SN G) VM A
G0, c'!“n. e .t‘\.. J:' M N T e ¥ Doy \"‘ll. Dy < W MO MR !) A!» N0 O 'sﬁ.‘.\\) 0“.:'..' St e

TG W W W T WA TR R T T T TR TR T R T W T T R T N T R W T R T R T RV E TR TSN T AT ETRETEF TEAT W TN T RT R R W ORCACRE RN L W -"7

3.4 RXISIS-II

iRMX-80 BASIC is, indeed, not executed under RXISIS-II but
constitutes a self-contained complete iRMX-80 system which can
be loaded from RXISIS-II but replaces RXISIS-II. It can only
be left via the Monitor (or via a system reset), in contrast
to ISIS-II BASIC which can be exited via the standard "EXIT"
command. BASIC programs generated with either version are
fully compatible.

ASM80 8080/85 Macro Assembler (see Intel's "ISIS-II
8080/85 Macro Assembler Operator's Manual").

BASIC iRMX~-80 based BASIC (see Intel's "iRMX-80 BASIC
Reference Manual").

BASICI ISIS-II based BASIC (see Intel's "BASIC-80 Refer-
ence Manual").

3.4.1.2.4 Special RXISIS~-II Functions and Programs

The following functions and programs are used exclusively by
RXISIS-II; they cannot be executed under ISIS-II (although
there are some similar ISIS-II functions).

@: Disk File Display Utility.

This disk file display utility is executed by the
RXISIS-II Command Line Interpreter rather than by
an explicitly loaded program. It is invoked by
entering

@ [<device name>]<file name>

Only disk files can be displayed with "@". The
first page of the specified file is presented im-~
mediately. The operator can continue the file
display line by line by pressing the space bar on
the console terminal; pressing any other key trig-
gers the display of a new page. The display proc-
edure can be exited by pressing the Escape key.
Tab characters are resolved properly. Lines whose
lengths exceed the screen width (80 columns) are
subdivided; the subdivision is indicated by an ar-
row ("=-==>") to the left of the continuation line.
Non-printable characters are replaced by question
marks ("?"). Since all console input is inter-
preted as control signals for the display utility,
no type-ahead input can be entered during the exe-
cution of this function.

- 85 -

PR Ce e | R T R R W T SR T YR AT LY
~ PN " P s ARty {BJN'QS:?:}N"\’: .p,_-r:.ﬂ: #‘\M.\'ﬁf,& vl

‘
A0
s

's
A ™

¢

S
o 3.4 RXISIS-II
T

> . :

f{' DEBUG: Program Execution Under Monitor Control.
Do DEBUG is, in fact, not a program call but sets an
b internal switch in RXISIS-II. Its use is similar
a0 to the DEBUG function of ISIS-II; further informa-
. tion can be obtained from Intel's "ISIS-II User's
uoe Guide".

1)

& FORMAT: Disk formatting utility.

o

.3: FORMAT permits to format blank disks. The program
10 . . .

455 is invoked with the command
a‘. -

FORMAT [<device name>]<label>

W8

}i where <device name> may be either :F0: or :Fl:,
.{: and <label> any sequence of one to six alphanumer-
t@ ic characters which may be followed by an optional
oo extension of a period and one to three alphanumer-
L‘ ics. <device name> determines the drive on which
il the disk is to be formatted, and <label>, the fu-
NS ture disk label. <device name> may be omitted: in
oA this case, the disk in drive 0 is formatted. The
;32 program confirms the data given with the call, and
s requests operator actions where necessary. Note
o that only the ISIS-II but not the RXISIS-II system
3 files are created with the FORMAT call. An error
o message pertaining to missing RXISIS-II files is
- therefore issued after the execution of FORMAT if
K. the disk in drive 0 was formatted. FORMAT re-
rﬁf boots RXISIS-II after its execution. Any type-
{5 ahead is therefore lost.

;:} RMXDBG: iRMX-80 Debugger.

\':

e The program RMXDBG loads and activates the iRMX-80
o Active Debugger (compare Intel's "iRMX-80 User's
Y Guide"). The top of user accessible memory is
ot moved down to 92FFH. RMXDBG makes itself resident
,3 in memory and returns control to RXISIS-II; arbi-
:b¢ trary RXISIS-II compatible programs which do not
"j exceed the available memory space may be loaded
;‘ and executed. The Debugger remains active until
'04 RXISIS-II is re-booted.

.0'

o

AN

..

S

i~

[- 86 -

e

n:‘ﬁ.

.'.;.c

O e S S e R S R T A O R R R e

-
-
T et

-
3

-~

vy

‘r}‘:

v

A A

N .“r lv. 5

Uy

. o

LR R s B o b 4

RN P o w e =, =, P
o

P
2 .

-
-
-
»

S 4
e

o
v
w

3.4 RXISIS-II
@ File Display Utility.
FORMAT Disk Formatting Utility.

RMXDBG iRMX-80 Debugger.

3.4.1.3 Executing Programs Under RXISIS-II

The first routine which is automatically invoked upon power-up
is the built-in Confidence Test, or, more precisely, the
memory test sequence of this routine (compare chapter 3.3.2).
The Confidence Test vectors control to the System Restart
sequence of the Monitor which issues a proper sign-on message.
Any hardware system reset happening at a later stage directs
control immediately to the Monitor, bypassing the Confidence
Test. Memory contents are thus preserved from destruction by
the memory test routine.

An RXISIS-II system disk, i.e., a disk containing the files
"RXISIS.BIN", "RXISIS.CLI", and "RXISIS.PSC", should now be
inserted into drive #0. Pressing the "RETURN" key immediately
after the "System Restart" message was output makes the system
load RXISIS~-II from disk. Control is vectored to the Monitor
if any other key is pressed (compare chapter 3.3.1). A hyphen
("-") appears as an operator input prompt when RXISIS-II is
ready for command input.

At this stage, any program compatible with RXISIS~II may be
invoked. Since RXISIS-II obtains console input via the Alter-
native Terminal Handler, all line editing and control features
described for the Alternative Terminal Handler (compare chap-
ter 3.3.4.2) apply fully.

There are two basic operation modes for the execution of user
programs, namely, Regular and Debug Mode.

(1) Regular Mode: Upon entry of the device name (if applica-
ble; only ":F0:" and ":Fl:" are permitted) and, without
intervening spaces, the file name, the program file is
loaded, and control is submitted to the loaded code unless
an error was detected by RXISIS-II during program loading.
It lies in the responsibility of the loaded program to
return control to RXISIS-II upon completion.

(2) Debug Mode: Debug Mode is entered if the above command is
preceded by the switch "DEBUG" (and an intervening space).
In this case, the specified file is loaded, but control is
not transferred to the loaded code. Instead, the Monitor

- 87 -

)
| e R MMM RN . 1 ~
Wy ﬂ&hﬁ!ﬁ&;ﬂ W J\Wﬁ ; \ LA

“alhe Bk ok okl aih bl b skl bl st r"

N
DA
>,
' :::‘
o 3.4 RXISIS-II
)
A is invoked. The user is now at liberty to display or
modify code or data prior to executing the program (com-
o pare chapter 3.3.1). If the loaded code was a main mod-
ule, its start address is already available in the Moni-
tor's Program Counter location; in this case, the program
. can be started with a simple "G" (GO) command without
L additional parameters. Execution breakpoints may be set
V) if necessary. The user must take care to return control
e to RXISIS-II after program execution (compare chapter
N 3.3.1.4). A "DEBUG" command entered without a subsequent
L file name permits to access the Monitor without loading a
::I program.
* 0
Three general types of programs may be invoked under RXISIS-
o II. The simplest type is represented by most of the utility
S programs listed in chapters 3.4.1.2.1 and 3.4.1.2.2. These
'ft programs are, from the point of view of the resident iRMX-80
o system, a simple quasi-subroutine extension of RXISIS-II.
‘n-- Such programs may be executed in arbitrary order, without many
‘ precautions since they belong, from iRMX-80's point of view,
= to the task RXIROM which executes RXISIS-II.
~?§ Some programs, however, require one or more additional tasks
7 to be created, e.g., "FORMAT" and "RMXDBG". These additional
o tasks are usually built by the part of the disk loaded code
(which is an extension of RXIROM. Such programs must by no
e means be simply overwritten by new program code or data even
ey if they are no more required since the additional tasks they
,”f contain have been included into the iRMX-80 task scheduling.
N The easiest way to get rid of such no more required tasks is
:”a to re-create the entire iRMX-80 system by re-booting RXISIS-
b II.
J
o Some applications, finally, do not need the ISIS-II interface
. of RXISIS-II altogether; they are more efficiently configured
,hﬂ without RXISIS-II. Such programs (e.g., iRMX-80 BASIC or
e genuine real-time application systems like the CGCS) are kept

in an overlay which is loaded instead of RXISIS-II rather than
in addition to it after an iRMX-80 system restart. RXISIS-II
was configured to permit the loading of such entire systems as
if they were simple utility programs like those described in
chapter 3.4.1.2; aside from a more prolonged disk activity,
the operator will hardly notice any difference. Such systems

- o v v
X 1.
J’Jh v

1

< are activated by loading a dummy program under RXISIS-IT
[2 (e.g., "CZOCHR.RXI") whose only purpose is to vector control
2 to a dedicated part of the Command Line Interpreter code.
T/(This routine replaces the extension ".RXI" by ".BIN", stores
fﬁ the modified file name for the bootloader, and calls the boot-
e loader. 1In our example, the file "CZOCHR.BIN" is therefore
120 loaded instead of "RXISIS.BIN" after iRMX-80 was restarted.

0.

‘o - 88 -

o)

- -
£
-

A

l.; o

‘\.

.3

SR IS DO I Y A R A ey I)

.'.\\-’

3.4 RXISIS-II
3.4.2 The Programming Interface of RXISIS-IT

3.4.2.1 Preparation of RXISIS-II Programs Without Additional
Tasks

The system routines provided by RXISIS-II behave - with some
minor differences - identically to the corresponding ISIS-II
and ISIS-II Monitor routines. The appropriate documentation
in Intel's "ISIS-II User's Guide" applies therefore; the lib-
rary modules of the ISIS-II SYSTEM.LIB may be used to access
RXISIS-ITI functions.

No special care is required for the preparation of programs
intended for running under RXISIS-II which do not introduce
new tasks, and the instructions given in Intel's "ISIS-II
User's Guide" can be followed exactly. Programs which are to
be executed under RXISIS-II must not use memory above OC7FFH
(or, above 92FFH if they should run with the iRMX-80 Debugger
installed); on the other hand, they may access memory from
2800H upwards. This boundary is not affected by the number of
disk files used by the program. Note that RXISIS-II sets the
stackpointer to the current top of memory before it submits
control to the user program loaded; code or data located next
to MEMTOP may therefore be overwritten if the user code uses
the stack without redefining the stackpointer. (On the other
hand, programs which do not redefine the stack may return to
RXISIS-II with a simple RETURN machine instruction.)

In order to maintain compatibility between ISIS-II and RXISIS-
II, the program code start address should, if possible, be
chosen at 3680H according to the ISIS-II rules. The stacksize
must be at least 24 bytes plus the stack required by the pro-
gram itself in order to permit a non-restricted execution
mode. Programs which should be executed under RXISIS-II must
be configured as main programs (otherwise, the Monitor is
invoked after the routine was loaded, and the start address
has to be entered manually).

No special procedures are required for the linkage and locat-
ing of such programs; all PUBLICs required to satisfy the
EXTERNAL references are contained in the standard ISIS-II
library SYSTEM.LIB which should therefore be linked in as the
last library. (The library RXISIS.LIB must be included after
SYSTEM.LIB if either of the new routines SETMTP or EXICHK is
used.)

The following ISIS-II and ISIS-II Monitor routines and func-
tions are implemented under RXISIS-II:

- 89 -

P T LA VLA TS YU 7T T Y W VIR T WO U T WU W W W I W R W ETTEy) LT R ARSI T TR T AR YT T s s SRR TR “n-v’r—vv-vwv-vvuvv----wj

1240
[¥
| 23 3.4 RXISIS-II |
b |
o0 ISIS-II: OPEN
(CLOSE
o DELETE
S READ
' WRITE
RN SEEK
0 LOAD
X RENAME
o EXIT
™ ATTRIB
X RESCAN
N ERROR
’ WHOCON
SPATH

o MONITOR: cI (Console input)
Lo co (Console output)
;Qﬁ Lo (Printer output)
O CSTS (Check console status)

. IOCHK (Check system i/o configuration)
. IOSET (Set system i/o configuration)
?; MEMCK (Return top of user accessible memory)
o

d’

f“ The following restrictions and differences to ISIS-II apply:
a4 W
" (1) No line-edited disk files are permitted.

P xl

e (2) RESCAN can therefore be applied to the console input only.
.

- (3) Only the console CRT terminal is permitted as a console

‘}' device. This prohibits the use of SUBMIT files.
o (4) It is not possible to re-define the console device either
%b& with CONSOL or with IOSET. The IOSET routine provided is
“: only a dummy routine without any effect.
e
s

3_ Two routines are available in RXISIS-II in addition to the
et ISIS-II system routines, namely, SETMTP and EXICHK. Their
Qg entry points (and the entry points of all above RXISIS-II

:% routines) are kept in the library RXISIS.LIB.

O

"
Mgt SETMTP: This routine permits to change the top of the user
: @, accessible RAM. The address specified with the call

o is the highest location which can be overwritten

g during program loading. The routine requires one

3 address type parameter (the MEMTOP value) if called !
e from PL/M, or the MEMTOP value in the B-C register

S pair if called from assembly language.
2 - 90 - i
- |
n':“ |
K |
\':“

SO) Y AAG [\ A AHER L LRV TR LR AR OO OO X
e e T T T s e e

W F Y,

e aal eall Bag Al an b i wal VAR Sol eag vl dadh Gl tal ol il el Gafl Sul ol Sl sl ol el ual Saf tal sal Vo i ol apld tojh b Sal Raltah SR PRl Salbsthdh Al S e e Bl Wi et A ‘\.“‘(‘“ﬁ

ris.

-V

E

--‘~ - g e gy
w s

3.4 RXISIS-II

)

EXICHK: This routine returns the System Exit flag which is set
by the Monitor to OFFH upon an "E" command (compare
chapter 3.3.1.4) and which is otherwise reset to zero.
The flag is a byte parameter returned in the A regis-
ter:; the processor's zero flag is set accordingly.

v

Evidently, compatibility to ISIS-II need no more be maintained
. for such programs. Additional tasks can be created dynamical-
ly by the appropriate RQCTSK calls issued by the program's
main routine (which continues the RXISIS-II task RXIROM).
Such systems must be linked with the PUBLICs of the ROM resi-
R dent system which are contained in the library RXIPUB.LIB.
ﬁ i The program should verify whether the version of RXIROM resi-
e~ dent in the system when it is called is the same version with
. which it was linked. (The version code of RXIROM is the value

.- of the PUBLIC parameter RXIVER.) In some cases, it may be

v m necessary to link such programs also to the PUBLICs of the
. disk resident part of RXISIS-II (e.g., to prevent the direc-

> tory-based Disk File System routines from being linked in a

RS EXICHK may be called by routines which perform lengthy

$ operations without invoking any of the (RX)ISIS-II

s functions. An ISIS-II EXIT call should be performed

B if EXICHK is found set.

L

Y 3.4.2.2 Preparation of RXISIS-II Programs With Additional
Tasks

S

R

A {' second time). An un-purged version of RXISIS.BIN is, for such
M purposes, available under the name RXISIS. The program
s should, however, also check the RXISIS-II overlay version
i number in this case which is the value of the PUBLIC parameter
1 ! RXIVSN. (The RXIVER and RXIVSN values of the current system
4 configuration are stored in RAM at the locations OFEAEH and
OFEAFH (feor RXIVER), and OFEACH and OFEADH (for RXIVSN),
| 'g respectively (see Appendix 3).
; After their execution, programs containing additional tasks
R must no more return to RXISIS-II unless they made sure by
AN lowering MEMTOP accordingly (via a SETMTP call) that the code

of the task(s) created by them is located in memory which is
protected from being overwritten, or unless all tasks and
B exchanges created by the program are deleted. Otherwise, such
¢ programs should be terminated with an RST 1 instruction which
restarts RMX-80 and re-boots RXISIS-II, rather than with an
s ISIS-II EXIT call.

T o P

) - 91 -

h‘ h‘.:!" .“‘l f’ ‘?lc .'l‘,'l .I.‘.Q 'lq‘ l. K3 . V’; !n‘."."-“‘.“'c) AN ..’0'.% B 'q“.'o.:':‘ .‘ o .'.'l. ‘o"':‘.':'. .'.'J. , '.'.'\ A "‘Q"'o N

s @ (S
0t P EEF
J

R4

"
[T A Nt

(.l

vy

3.4 RXISIS-II

hs)

5

Lx.
Lo
_—ut £

]

3.4.2.3 The Preparation of Real-Time Application Systems

The rules given in the preceding chapter apply also to real-
time application systems which include RXISIS-II. Systems
which do not need the ISIS-II emulation (like the CGCS) should
rather be configured as independent iRMX-80 based disk over-
lays. Such overlays are loaded in two steps:

. 'r'-

x
s
Pl 4
LAGAANNSY

AN
p .

-
il

First, a dummy program with the name of the system and the
extension ".RXI" is loaded which vectors control to a dedi-
cated routine of the RXISIS-II Command Line Interpreter. The
Command Line Interpreter replaces the ".RXI" file name exten-
sion by ".BIN" and passes the resulting program name to the
ROM resident initialization/loader code. Such a dummy program
is available on the RXISIS-II Software Development Disk under
the name "BOTLOD.OBJ" (or, e.g., as "CZOCHR.RXI"): it need
only be renamed appropriately.

-
(4

-
-

-

)
'

.
I.l‘.//. i

H

/.77,
N

4, 4 '-,'-

O
CA
s A,

.
7,

>~
5

Second, the system proper is loaded by the ROM resident boot-
loader. The bootloader checks the ROM system version under
which the overlay was created and issues a fatal error message
if this version differs from the current one. The bootloader
expects the two-byte ROM version code (which is supplied by
RXIROM as the value of the PUBLIC variable RXIVER) in the
locations OFEAEH and OFEAFH, where it must have been deposited
by the system overlay loaded.

)

S Jr

R I !
.t. y'“l et H
EEREUEY

‘i v

vy,
'
v

Application system code may be loaded into RAM between and
including 2800H and OFEADH. Memory below 2800H is reserved
for the ROM resident tasks; the memory locations from OFEBOH
through OFEEFH contain the Disk Controller's buffer, and RAM
from OFFFOH through OFFFFH is used by the Loader. The latter
locations may be overwritten by application systems if the
Loader is no more needed; still, they are also partly used by
the Monitor. Data stored there may therefore be mutilated
when the Monitor is invoked. (Compare Appendix 3.)

LA

?“l l‘

2
Wos, 'y

0000
; als
I ARARS

In general, real-time application systems can be configured
according to the rules for bootloaded iRMX-80 systems. The
ROM resident part of the task RXIROM loads the disk overlays,
checks for loader errors and for the correct linkage version,
and starts executing the loaded code beginning with its entry
point address (the overlay must be a main module). A special
routine, RMXOVL, has been provided in RXIROM.LIB which must be
linked in as the first module when the application system
overlay is created, instead of the START module of the iRMX-80
Loaded System Library LOD8xx.LIB. The commission of RMXOVL is
to create the tasks and exchanges contained in the Create
Table of the overlay, and to delete the task RXIROM which is
supposed to be no more required by the application system.

o f.f‘.
A

o~
>

]

v

- LR e -
t .
M Y2008
2, W ey
5o .

4

S

ll ‘l
’l

4 4 4
BhdAl
L AA® NS NH

- 92 -

oL -
}fn' e u
hARI RN

<~ }

SNSRI
"

_'-'-'-‘-\'-#,‘-\" s W 1S 2 o IS NV e T I AT AL LS T AT T Tt Ty
n y . ’V.) ’ " Py \'..h"'h .h‘ -'[\l"‘f *\.‘ .

” l..l..‘.'."“l
SN

S S0 O g e T aTn Y
AT a Y g Ve e

......

42

AP

3.4 RXISIS-II

Furthermore, RMXOVL is configured to provide the ROM system
version code in OFEAEH and OFEAFH. (Application systems may
use a similar entry routine which does not delete RXIROM, and
continue this task with an arbitrary function. This has been
done, for example, in the CGCS where RXIROM continues as the
Command Interpreter task.)

..

"".l.. l'_

The LINK call for configuring the overlay should therefore
contain the following items:

7N

[
.

A An iRMX-80 Configuration Module
h RXIROM.LIB (RMXOVL) (or an alternative module)
b Application specific modules
LOD8xx.LIB (The Bootloader Library for the iSBC used)

A All iRMX-80 extensions required
= RXIPUB.LIB
RMX8xx.LIB
. BOTUNR.LIB
; UNRSLV.LIB
PLM80.LIB
= The Configuration Module and a configuration SUBMIT file may
r be created with Intel's Interactive Configurator Utility
Ic'-80. Still, the ICU-80 created SUBMIT file must be edited
- to comply with the above structure.

. Disks exclusively used for a real-time application system need
not necessarily contain the files RXISIS.BIN and RXISIS.CLI.

g Still, they must provide the Cursor Positioning overlay

™ RXISIS.PSC if they are to be mounted on drive 0. Due to the
loading approach chosen, application system overlays may be
located on and invoked from either drive.

7

3.4.2.4 Use of ROM Resident Routines by Application Systems

;o

JI

L

Aside from the Terminal Handler and Loader tasks, the RXISIS-
II ROM contains several routines which are used by RXISIS-II
but may also be called by application system tasks:

Ess

RXCFNB: Create File Name Block.

o0

This routine parses an input buffer for a valid file
name whose start address is submitted as a parameter.

s It returns a completion code which specifies the
:j device type or possible error conditions, and a File
Name Block which can be directly used by the iRMX-80
" Disk File System routines. If called from an assembly
i- language routine, RXCFNB also provides a pointer to
- 93 -

.

'.

V.

’

;"

------ » " [E" LB O | LA - g 2" " Y L& o "y
it n‘- 3) '-“-‘ ':':'. W, ﬂf'ln'.‘\".'\'. A -l \ R aR !t Attt | At \ Dot vt &M. :?M

3.4 RXISIS-II
the first character after the file name. Leading
spaces in the input buffer are ignored by RXCFNB.
Strings following a colon (":") are interpreted as
device names; only the device names listed in chapter
3.4.1.1 are permitted. Strings without a leading
colon are supposed to be names of disk files on drive
0O (":F0o:" is appended internally). Invalid device
names (all entries different from the names listed in
chapter 3.4.1.1), invalid file names consisting of
more than 6 alphanumeric characters, illegal exten-
sions longer than 3 alphanumeric characters, and
missing extensions (file name terminated with a period
but without an extension) are reported. The File Name
Block is undefined or partly undefined in this case.
It is also undefined if a non-disk device was speci-
fied. A special code is returned if the string
"DEBUG" (without extension) was detected. A file name
is considered terminated if the first not alphanumeric
character (not necessarily a blank) is detected; the
register pair B+C is returned as a pointer to the
location of this character.

CALL FROM PLM:

status RXCFNB (.buffer,.file$name$block)

PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

A ... Completion Status Byte (0)
B+C Input String Start Address (I)
Address of First Character After String (0)
D+E . File Name Block Start Address (I)
The following status codes are returned:
00H ... Device = :CO: or :VO:
OlH ... Device = :CI: or :VI:
02H ... Device = :LP: or :TO:
OFH ... Device = :BB:
10H ... Device = Disk; File Name With Extension.
11H ... Device = Disk; File Name Without Extension.
20H ... Device = Disk; File Name "DEBUG".
40H ... Illegal Device Name.
80H ... Illegal File Name.
81H ... Missing File Name.
82H ... Illegal Extension.
83H ... Missing Extension. !
—94-

OO0 OGIO OO A O X !
.I"‘l"’t"'s'.‘u'.‘r.:.Q“.-‘l'l..'f“.r"!,‘QT. LY

OO0)
AR

0 OO0 B0
Sttt M

2
r"

v s
...l

-y -
v h'.-'

IR P

)-
B3

YY)
T

1.);.‘..‘ -

S X
%

FL ol Wb

PN S S S
o
L 8

. ’ ,
23 I e e

- J‘
2
4

.,'-“-fn hY '-_'.,‘y_'. 2

. .- e
VOO @ AL X

RXCEXT:

RXCNEX:

RXCRMX:

N AR AT ST,
LA A P "

e

"~
-.’

%

A

......

3.4 RXISIS-II

Valid data are contained in the File Name block if the
codes 10H, 11H, or 20H are returned.

Create Extension

Similar to RXCFNB, RXCEXT parses an input buffer for a
file name extension string (one to three characters).
The parameters and completion codes of RXCFNB apply
analogously.

Create Null Extension

In contrast to the above routines, RXCNEX does not add
data to a file name block specified with the call but
replaces a possible extension within the file name
block by binary zeros (corresponding to no extension).
For reasons of compatibility, the same parameters and
completion codes apply as for RXCFNB; although no
input string is actually required a dummy such param-
eter must be specified with a call from PL/M.

Create RMX-80 Overlay System

This routine replaces the START module of the Loaded
System Library LODxxx where xxx corresponds to the
type of the processor board used (80-24, 80-30). It
uses the Create Table RQCRTB specified for the overlay
system; such a table may be created by Intel's Inter-
active Configurator Utility ICU-80. The address of
this Create Table must be passed as a parameter to the
RXCRMX call. (Since RQCRTB is declared PUBLIC by
ICU-80, a "Multiplely Defined Publics" error message
referring to it is issued during the system linkage:
this error message can be ignored.) RXCRMX first
creates all exchanges and subsequently all tasks
specified in the Create Table.

CALL FROM PLM:
CALL RXCRMX (.RQCRTB)

PARAMETERS FOR ASSEMBLY LANGUAGE CALLS:

B+C . Address of the Create Table RQCRTB

- 95 =

N L R RS N Rt A e e e R LN N) N LW A AL -
"""’ "'* . 0. nh "\' "’ .0. A% '0. SN

o
o)

AN

¢

Py

. 3.4 RXISIS-II

3.4.2.5 Other Utility Routines in the Library RXIROM.LIB

The library RXIROM.LIB holds, in addition to the routines al-
ready discussed above, a number of auxiliary routines which
may be called by application programs. Since these routines
.l are not included in the system ROM, they have to be linked in
explicitly when the user program is configured.

RMXOVL: Start Module for iRMX-80 System Overlays.

" This routine has already been mentioned and discussed
in chapter 3.4.2.3.

LNKDBG: Link RMX-80 System Overlay with Debugger.

This module has to replace RMXOVL if the iRMX-80 Ac-
tive Debugger is to be included in an iRMX-80 real-
time application systenmn. It includes the Active
Debugger's Static Task Descriptor and some initializa-
tion sequences required for the execution of the
Debugger (particularly, the generation of a RAM resi-
dent vector to the breakpoint entry point of the
Debugger). The module RSTSVC in RXIROM.LIB must also
be included with LNKDBG. The particular structure of
RXISIS-II prohibits that the modules constituting the
iRMX-80 Debugger can be directly requested if the Con-
figuration Module is created with ICU-80. The corres-
ponding libraries must be specified with the ICU-80
"LINK" command.

LIPRAIP™S o DV 1 R 2o 28 =

« T il N

3 CRTFNB: Create File Name Block.
' CRTEXT: Create File Name Extension.
CRTNEX: Create Null Extension.

These routines are, in fact, the predecessors of
r RXCFNB, RXCEXT, and RXCNEX, respectively (see chapter
G 3.4.2.4). They differ from the ROM resident routines
- insofar as they perform a more stringent check of the
.' file name string. With CRTFNB, a file name must be
terminated with a blank (space or control character),
while with RXCFNB any non-alphanumeric character is
accepted as the file name terminator. (Non-alphanume-
ric characters within the six places of a file name,
or the three of an extension, cause an error code of
80H and 82H, respectively, if the file name string is
) parsed with CRTFNB.) The same applies to CRTEXT. The
‘2 programming interfaces are identical to those of the
corresponding "RXC..." routines.

[Sl s

- 96 -

4.1 Basic Operation Concepts of the CGCS

4. The Operation of the Czochralski Growth Control System
4.1 Basic oOperation Concepts of the CGCS
4.1.1 General System Design

The Czochralski Growth Control System (CGCS) was designed as
an interactive real-time process control program whose initial
purpose was to replace the conventional analog controller
supplied by Cambridge Instruments for the CI-358 LEC puller.
From its initial commission of emulating the analog systenm,
the digital controller was further enhanced by the addition of
advanced deterministic and, finally, heuristic control fea-
tures. The key characteristics of the CGCS can therefore be
grouped according to the level and quality of control.

(1) Emulation of the analog controller:

The CGCS is connected to the puller's output signals in
parallel to the analog system, permitting both controllers
to monitor a growth run in parallel (compare Fig. 2). The
following CGCS functions can be considered a replacement
of the analog controller:

* Display of measured data and setpcints: All relevant
measured data (as listed in chapter 2.4.1) are displayed
permanently on the console terminal; Fig. 9 shows a
(simulated) display screen.

08-10-87 21:19:54 Run ID: Demonstration Screen MACRO System Time: 27:16:22

Actual: Setpoints: Mode: Automatic Length: 85.45

Diameter (D): 83.73 82.00 82.00
Ramping: 2/20 Condit.: 1/8

Temp. 1 (T1): 23.65 23.63 23.50
Temp. 2 (T2): 23.98 23.95 23.80 | Weight: 2348. Diff.Wt.: 1.476
Temp. 3 (T3): 23.39 23.36 23.25 | Seed Pos.: 246.7 Cruc.Pos.: 23.89
Base Temp: 20.19 Gas Press: 297.6
Power Limit (PL): 80.00 80,00 ---v-ccmeceiimneemmtttee e

Actual: Setpoints:

Seed Lift (SL): 9.003 9.000 9.000 { Seed Rot. (SR): 4.997 5.000 5.000
Cruc Lift (CL): 1.487 1.492 1.500 | Cruc Rot. (CR): -30.0 -30.0 -30.0

2881H= -28 28C9H= -3 2842H= 0.001250 36F9H= 23.67148
set propi0 -20 300

macro

wakdw Executing Macro MACRO wwi#+

deb ¢ rcrset 4

Please Command:

comm This is a demonstration screen with arbitrarily invented data_

Fig. 9: Console screen of the CGCS.

- 97 =

s
!'— ",
@+
o S
-~
Y
_i; 4.1 Basic Operation Concepts of the CGCS
ufﬁ The console screen shown in Fig. 9 displays, in general,
{ ¢ the following items:
oy
. " (1) Date, time, and run identification in the top line.
EAS Two times are displayed, namely, the actual time (in
el 24 hours format), and an internal system time which
425 starts at zero when the system is initialized, and
v) can count up to 95 hours, 59 minutes, and 59 sec-
Mg. onds. (It wraps around to zero after 96 hours, and
,Qt: starts counting up again.) The top line holds, in
%+ addition, a space between the run identification and
m\ the system time where the name of a Macro Command
e (see below and chapter 4.5) will be displayed while
it is executed.
v
:J (2) A regularly updated display of measured system pa-
ﬂ rameters and of setpoints. Two columns are provided
. for the display of the setpoints: The left column
e holds the currently valid setpoints, whereas the
P right column displays the final setpoints which may
; differ from the current setpoints if a parameter is
o being modified by the system. If a parameter is set
> by the output of a controller (e.g., the heater tem-
. perature in diameter controlled mode), the right
R ﬁ column indicates a bias value input to the control-
e ler. Parameters which can be entered as setpoints
; are, in addition to their full names, identified in
N the screen display by the two character abbreviation
) with which they are to be identified. The system
o was designed to accommodate a three-zone heater.
" Therefore, three heater temperatures and three pairs
= of power values are displayed. (In the current im-
). plementation at ASU, only one heater channel is
oY meaningful; the measured data for the second and the
aﬁ third channel have been tied to those of the first
o channel.) There are two output power values for
- each heater channel, referred to as "In" and "Out";
Sk the "In" values specify the percentage of maximum
o power which is input to the power controller, while
? "Out" gives the actual output power; both are scaled
hﬁf to lie between 0 and 100. (The "In" values are, in
"o fact, calculated and output by the CGCS, whereas the
e "Out" data are measured data input by the CGCS.
; "In" and "Out" refer to the power controller, not to
9. the CGCS.)
el
{*ﬁ (3) Internal system status information: This informa-
v tion comprises the number of parameters being "ramp-
:fhj ed" (i.e., being modified linearly between their in-
o itial and intended final values within an arbitrary
Q%ﬁ - 98 -
:’i:.'
!
't:"l
o
it
-@Q
' AR Y

T Wy 0 ety P W i Nt Y Y Y TR S Sy Py
N P ! Y,]))
-.I'u,i'm .I'.,l.:?t'h!;:?l‘.’o'., Oy -,0 U R LR RE SR N, \ ™

v s AR Al Mol el Sl Met St Aec Ba~ de- i _Ra i AL alh aid aER AMA A AL A Sad Aal Suh hal Sal Sal ti i takacAke AleAla AV RSS BSR A N Al Al il Sl A Rt Akl SR A A

4.1 Basic Operation Concepts of the CGCS

time), and the number of Conditional Macro commands
pending, against their respective maximum values (20
and 8, respectively). Furthermore, the operation
mode (see MODE command) is displayed close to these
two values in the top right corner of the screen.

(4) Command echoes and system messages: While the upper
part of the CGCS output screen is in a fixed format
and updated in a random access mode, the echo and
message area (five lines in the bottom third of the
display) is scrolled up as information is added in

. the bottom line. The echoes of operator entries are
. displayed there, and messages issued by the system
are directed there, too. 1In addition, the same area
is used by some commands for the display of menus or
auxiliary information. The scrolled portion shrinks
to four lines if auxiliary data display is requested
- with the DEBUG Continuously command. In this case,
the top line of the scrolled portion is used for the

DEBUG output.

(5) Command prompt line: All operator actions are re-
quested in the last line but one on the screen.

(6) Input area: The bottom line is reserved for the
currently entered command line. In general, the
RXISIS-II rules apply to the entry and to the edit-
ing of commands.

* Data logging and recording: All parameters displayed on
the console screen can optionally be recorded on disk
for later analysis. One record (which contains the
values of more than 50 parameters) can be written to
disk at intervals ranging from one second to 255 sec-
onds. The entire dialogue between the operator and the
CGCS can be copied to a line printer or to a disk file,
with the time appended at which each line was generated.

* Control of the "primary" system parameters: The primary
parameters - heater temperature(s), motor speeds, and a
power limit for the heater(s) - can be modified interac-
tively in either an absolute mode (i.e., by specifying a
target value), or in a relative mode (i.e., by entering
the intended positive or negative change). In either
case, the system can be instructed to adjust the parame-
ter instantaneously to its final value, or to "ramp"” it
gradually between its initial and intended final values
within an arbitrary interval. Digitally implemented PID
control loops are used for maintaining the controlled
parameters at their respective setpoints.

- 99 -

BT AN AN AN A N A T A A) YERCRLATEERCR TS

PN Ve AN N O T e i

S
Sl
a_'il
A
\
Eg 4.1 Basic Operation Concepts of the CGCS
1N
Lo * Diameter control: Based on the standard weighing meth-
. od, the diameter of the crystal grown is determined with
TR an algorithm which takes into account the buoyancy of
K the part of the crystal which is immersed in the boric
ﬁg oxide encapsulant. Depending on the operation mode of
h >, the CGCS chosen, the heater temperature can be control-
s led to maintain the crystal diameter at its setpoint.
V) (Further details of the controller operation are given
e in chapter 4.1.2.)
.o
:ﬁj (2) Advanced features of interactive control:
LA
The following features of the CGCS facilitate and enhance
o control over the puller; although they increase the degree
o of automation significantly over the one offered by the
:?x analog Cambridge Instruments controller, they are not
ﬁk: sufficient yet for an entirely automated operation.
AL
'%‘ * "YVariables": Any arbitrary system parameter can be
s identified by a symbolic name, and displayed and modi-
LEN fied exactly like primary parameters. (A directory of
NN Variable names is kept in a disk file; its size is only
A5 limited by the available disk space and by the time it

takes to locate a given Variable.) This feature permits
access to intermediate results and to controller parame-
ters which may be modified dynamically according to the

P

- oy

ﬁg requirements of the process.

w
%3 * "Macro" commands: All commands actually pertaining to
Ao the crystal growth process can optionally be recorded in
‘ol a disk file, with the time (relative to the start of the
J recording) appended at which each command was issued.
O The resulting command file may be edited (or created)
s with a Macro Command Editor program which runs under
ak RXISIS-II, and used as an input for subsequent growth
e runs. Commands recorded in the Macro command file are
A executed exactly with the sequence and timing of the
,32, original run. Since Macro commands can be referred to
b by a single-word command, and since they can be started
P

arbitrarily, they constitute a powerful feature of
combining complex sequences of commands, thus relieving
the operator from more complex command entries, improv-
ing the reproducibility of the process, and avoiding
operator errors. Commands originating from a Macro
command file may be interspersed with commands entered
on the console; the resulting stream of commands may be
recorded on disk again, which constitutes kind of a
learning ability of the system. Macro commands may even
invoke other Macro commands, which permits to concate-

o
.
|‘ .l 'l

R
&y
.

V) »

- 100 -

o > ‘)
o SN S Nk S N L L N Y S % "I R N S e "™ \-’.'»I""/‘\'-"" s,"\.""-,\-
I AN N A A R R P A NN AL S LN G N A UL S

4.1 Basic Operation Concepts of the CGCS

nate a series of Macro commands for a more complex oper-
ation. (The current structure of the CGCS does, how-
ever, not permit subroutine-type Macro calls. A Macro
command which invokes another Macro command is therefore
preempted.)

The command flow in the CGCS is schematically depicted
in Fig. 10; commands entered on the console and from a
Macro command file are pre-processed by the Command
Interpreter and Macro Command Input tasks, respectively,
and submitted to the Command Executor task which con-
stitutes the interface to the actual process control
tasks. All commands sent to the Command Executor are
advanced in chronological order to a Command Output task
which writes them to disk if instructed to do so.

“ CONSOLE TCOMMAND
TERMINAL, ——————« NTER- .
_ycPERATOR) PRETER

‘A MACRO DISK
Eﬁ%ﬂﬁgg ———= COMMAND ————— (MACRO
o« QUTPUT COMMAND
oK WACRO ——
‘MACRQ ~——————= COMMAND ~ —_
SCMMAND) ! INPUT
o~ MMAND) | L]

Fig. 10: Command execution in the CGCS.

.
.
LR

PP A -
-"'. l‘d.'.
LY RN

-
-
»

- 101 -

ek &
N

.

'
<
P
4
¢

I P A p s e Y Y W A e T e e e
AL -~ & P %) PN AN A N N A
YEREGLLG LSRR AL ‘m\;*ﬁﬂﬂﬁ.. AT A AN AR P

.‘) B Bt _Bat _Bav AoV ga _Ba Ad _AA obht oth il o S 4 s S A R Sl Bad Sah daf Ml Sal Cad v o alio Al Ake Ala A6y A'e ASA A NE A Wl Sl Badk Bl P St il ol o ol AR a5 AR A Sl VT
)
h
o
g
e
v 4.1 Basic Operation Concepts of the CGCS
LA
i”- (3) "Intelligent" control:
i The above features are strictly deterministic, similar to
'{Q: most known crystal growth automation approaches. They are
PR not sufficient, though, for a fully autonomous growth
" control since they are not flexible enough to allow for
. the fluctuations which are typical for crystal growth
\ processes. While some operator interaction is therefore
T required for initiating operations or sequences of opera-
;iﬁ tions in other "automated" crystal growth controllers, the
:& CGCS endeavors to replace the decisions made by the opera-
.ﬁf tor by internally generated decisions, which requires
Joe features akin to artificial intelligence.
" "Intelligent" control is effected in the CGCS by the
NN conditional execution of Macro command files, i.e., by the
e execution of a Macro command if and when a Variable as-
b e sumes a specified relation to a given constant (e.g.,
‘}2 greater than or equal). The CGCS maintains a table of
'y such Conditional Macro commands which may be issued at any
R time by the operator, or by another Macro command; the
- conditions for the execution of each of these commands are
- checked periodically until either the condition is found
. met, and the Macro command is executed, or until the
{;ﬁ Conditional Macro is removed from the table by a pertinent
(- command. Since each Macro command may issue one or more
s Conditional Macro commands, the CGCS can be programmed to
;JV handle properly even relatively complex operations 1like
;:: seeding in an entirely autonomous way.
~I
:j: In contrast to the above "vertical" hierarchy within the CGCS,
i)- we can distinguish five "horizontal" operation modes each of
which comprises a higher degree of closed-loop control. The
RA . 1} . 1 .
- operation modes are identified by a numeric parameter and a
N, keyword name as follows:
:I‘ 0 - Monitoring: No control at all is performed by the CGCS in
‘f this mode.
Sl
K 1 - Manual: Closed-loop control comprises the four motor
"g» speeds, and the temperatures of up to three heaters. The
;:: CGCS does not effect closed-loop diameter control.
al 2 - Diameter: 1In addition to the motor and heater closed-loop
!i control, the CGCS controls the crystal diameter via the
5 heater temperature (compare chapter 4.1.2). The plain
-:{ differential weight, without anomaly correction, is used
A for diameter evaluation.
\’J*
9.,
o - 102 -
P,
N:
2
o
" ‘,,'.
SO S A AL a;?}?'x;n;x}\g¢' N LA T A RS \;\;\;?jm;\' i\'n}ﬁ'x*&'\i\}f**f\'

R

]
¥

Pl 2 v

YEN

R

-

F
TR

Sl

=

FALESS
~l"'-*.;

-

PR
Ax) S

v -
LR AN S O &

PR AN
Y, g

- > s -
- -

TS

{
K

)
)

2

4.1 Basic Operation Concepts of the CGCS

3 - Diameter/ASC: "ASC" stands for "Anomaly Shape Control":
A correction similar to the approach used in the analog
Cambridge Instruments Anomaly Shape Control board is used
for pre-processing the differential weight prior to the
diameter calculation (compare chapter 5.3.2.2.2). Aside
from this correction step, mode 3 is equivalent to mode 2.

4 - Automatic: Automatic mode comprises all features of Diam-
eter/ASC mode, plus closed-loop control of the crucible
lift speed which maintains the growth interface at a
constant location within the heater's hot 2zone (compare
chapter 4.1.2).

4.1.2 Control Loops in the CGCS

The fundamental operations of the CGCS, namely, the control of
the speeds of the four motors for seed and crucible 1lift and
rotation, and of the power supplied to the heater or heaters,
utilize conventional closed-loop control methods which are
generally based on PID controllers realized with a generic PID
routine. This routine is invoked with dedicated parameters
for each control loop. In addition to standard proportional,
integral, and derivative control, the generic PID controller
features several modes of output limiting and "windup" protec-
tion (which enhances its dynamic response if the controller
incurs a limit condition); the possibility to add a bias value
to the output of the PID controller allows for feed-forward
operations, and for small corrections of setpoints which are
basically determined by other sources.

The standard control loop for each of the four motors is out-

lined in Fig. 11: The primary control of the motors is done
by the analog circuitry which came with the Cambridge Instru-
ments controller. Under digital control, the setpoint for

these analog motor controllers is supplied by the D/A con-
verter outputs of the CGCS, rather than from a potenticmeter
on the analog console. Basically for the compensation of non-
linearities and offset errors of the analog motor controllers,
digital PID loops are used to pre-process the signals finally
submitted to the analog system in order to make the actual

speeds exactly match their corresponding setpoints. A com-
bined feed-forward and PI control approach can be used to
optimize the performance of the entire control loop. (Using

an analog hardware-based rather than a digital software-based
technique for the primary motor control guarantees a suffi-
ciently smooth and fast operation without overburdening the
digital system.)

- 103 -

SN
)

i o RN P4 T, P PPN A R da® i (N P WY . TR Ut L O
Aol G A "" Slaln e R el et et urhots, :'o‘:"‘:'0‘:"'3‘-"'0‘-'-"”‘!’- Yt eyt e il ettt iy

-

g— SEENSSLE AR o p ol on Sam aom vl a8 oo B oo g il st a-a ath il et el etk bk alh alf abi ald-ald-abdal

| @
N
N
7
f

4.1 Basic Operation Concepts of the CGCS

MOTOR : ANALOG |)
SPEED O—rel = PID ; MOTOR MOTOR
SETPOINT [! CONTHOLLER\ i

1 ’ : , :
—_— / ;
l TACHOM —\\

ETER

DIGITAL SYSTEM : ANALOG SYSTEM

Fig. 11: Control loop for one of the four motors in the CGCS
(analog/digital and digital/analog conversions are
not explicitly shown).

With regard to the diameter control method generally applied
to the growth of compound semiconductors, temperature and
diameter control are closely related to one another (Fig. 12):
In "manual" mode, i.e., without closed-loop diameter control,
a temperature setpoint value is compared to the digitized
output of the thermocouple which monitors the temperature of
the heater; the resulting difference is submitted to a PID
controller whose output controls the power setpoint of the
analog heater SCR controller. In "automatic" closed-loop
diameter controlled mode, the heater temperature setpoint is
modified by the output of a superimposed diameter control
loop. In contrast to the standard Cambridge Instruments
diameter controller which controls the heater temperature
according to the deviation of the first derivative of the
crystal weight ("differential weight") from a given setpoint,

the CGCS first calculates the actual crystal diameter, and
uses it as an input to the diameter controller. This permits
a more straightforward and understandable operation of the
controller. Since the CGCS was designed for up to three
heater zones, three independent temperature and diameter con-
trollers according to Fig. 12 have been provided in the con-
troller program.

- 104 -

))
o, "O,"!-"

L B e et hee et fns Ban fen Bat Rt Bat fav Bob gt Aoy Sad fed BoR jbl Rt A -

0 $ 1,
iy .I'n."o?\' y

5

L
S
4
8
S , .
e - 4.1 Basic Operation Concepts of the CGCS
)

ni. E

: WANUAL POWER LIMIT
o AUTO . —
'# « : . 1 i HEATER .
SN TEMPERATURE s - ,
[: = SETPOINT I, - PID L—- SCR = HEATER

. - o ‘ . CONTROUER =
7, f . . i . \\/.
| | .

t _.Q;/\}_J‘ | :
.a' " i /'\
? N '} : H

) ‘ ; / THERMO -

LUMIT

CA &)
F_l’: '
o~
o
[@)
[t
o
c‘l

|

e T P|D — | | CRYSTAL |

" P ~ ! ! |
1 N N R S

2 : .
; . ' owweren | ! d/dt . 7 weiowr \

w _—ECALCULATION[‘5 *‘T\ GAUGE /
o —— N N
.. DIGITAL SYSTEM | ANALOG SYSTEM

Fig. 12: Heater temperature and crystal diameter control
loops (analog/digital and digital/analog conversions
are not explicitly shown).

e tat]

P

PR R
P

ey
-

o An auxiliary control loop (Fig. 13) can optionally be applied
= to the vertical speed of the crucible: Since the level of the
semiconductor melt in the crucible drops during a growth run
according to the amount of material solidified, the interface
between the solid crystal and the melt would change its posi-

Laaslulalule

Yl tion within the heater, which is liable to cause growth in-
) stabilities, unless the crucible is lifted exactly by the
SN amount of the melt drop. On conventional pullers, the cruc-
,?:v ible 1lift speed is set to a fixed value which is calculated
- under the assumption of an ideally cylindrical crystal with
,2 - constant diameter. The CGCS, in contrast, computes a setpoint
> value for the crucible position as a by-product of the diame-
' ter evaluation routines, essentially by determining the amount
;f._ of melt already used up by the crystal; this setpoint is
S compared to the actual crucible position, and the resulting
S error signal is used as an input for a PID controller whose

J' output is superimposed on the crucible speed setpoint.
N W
O,
&, w

"

o ¥

'

> - 105 -

N 2
“' >
+ 4

a4

0|
N

¢

U
ol
1)

" g W Yy
g, O o Oy,

M
e
‘53
. :;‘;-;
NN 4.1 Basic Operation Concepts of the CGCS
‘*..-1
fow
Py
(q
) MANUAL
A T AUTO o
‘O CRUCIBLE " | CAUCIBLE UFT
"."‘ LIFT - 0! ' : / :
-...w SPEED }—% (D-c‘ MOTOR [——‘1\ MOTOR 1
NS SETPOINT | N 1 ‘ CONTROLLER | '
Y & \ ' SN
1 - » .
V) I,
A LIMIT i
L CRUCIBLE IR ,
o POSITION | ! .
"-j'\ SETPONT /| PID r :
LW i——." — | S—
o™ | h N
b 3 i S— J/CRUCIBLE\
Py ‘ POSITION
ENCODER
N g
¢ . .
‘A : / B
g | SRUCIBLE ! WEIGHT
‘i " GAUGE
o CALCULATION
o \\\//
" DIGITAL SYSTEM ANALOG SYSTEM

i
&
o4

ol

Fig. 13: Crucible position control loop (analog/digital and

. digital/analog conversions are not explicitly

¢ shown) .

-.;.

__:._

e

b 4.1.3 Diameter Evaluatjon in the cGeCS

;) The actual diameter of the crystal, and a number of auxiliary

/ y parameters like the crucible position setpoint, the growth

.45 rate, and the crystal length grown, are calculated by the CGCS

:‘j once every ten seconds. In addition to the differential
Lo weight, several other measured parameters are used as inputs
‘4 for these computations, as shown schematically in Fig. 14.

,;& The diameter evaluation approach used in the CGCS is based
o upon the differential weight signal supplied by an analog
?q differentiator circuit. After its A/D conversion, this signal

W is submitted to digital low-pass filtering; an anomaly compen-

a sation analogous to the approach used in the Cambridge Instru-
'Q: ments Anomaly Shape Control board may be applied to it. The
e current diameter of the crystal is calculated from this dif-

ot ferential weight using the actual growth rate (i.e., the dif-

R ference be.ween the seed and crucible lift speeds plus the

~}x: speed with which the semiconductor melt drops when it is con-
P’ sumed by the crystallization process). A full compensation

1}

gt - 106 -

"::‘!:!',‘- '.".lc ’!':'.' A)a N, e'u‘. A . ."f‘al,'o h!

. 4.1 Basic Operation Concepts of the CGCS

for the buoyancy in the boric oxide encapsulant is provided:;

(1 the diameter evaluation routine keeps track of the shape of
. the part of the crystal next to the solidification interface
. (to be accurate, of the last 75 millimeters of the crystal),
. and calculates the volume immersed in the encapsulant and the
- height of the boric oxide layer from this information. This
. approach permits the use of actual physical parameters of the \
] m system (like densities, dimensions, and speeds) rather than |
S the modified parameters required in conventional analog
S growth.
-
v e,
AR o
RN e m
B NEIGHT T O ciaMETER . CRYSTAL
“ TGt T . TALCJLATION JIAMETER
D ;
: ¥ ~didt —
! T T TGROWTH RATE_ GROWTH
- CALCULATION RATE
- '\-:
L : —
! - CRUEBE T R CRYSTAL
{ i‘ Seen —— ALCULATION LENGTH

—— “ U ——

- $£23 -
P ZISITICN ——
S INCOOER CRUCIBLE CRUCIBLE
B TS . POSION —s—————= POSITION
[- -“.t — CRUCIBLE - CALCULATION SETPOINT
- SCSITICN
- EINCODER
' — CRVSTAL SHAPE STORAGE
YRS ENCAPSULANT LEVEL CALCLLATION
o ANALOG SYSTEM SRCWTH PARAMETERS
< -
{
¢ : . . .
;e Fig. 14: Block diagram of the evaluation algorithms for the
R crystal diameter, the growth rate, the crystal |
" length grown, and the crucible position setpoint |
.o (analog/digital and digital/analog conversions are
T not explicitly shown). !
¢ \
¥
Y The diameter and crucible position evaluation algorithms which
N) are used throughout the major part of a crystal growth run are
. based on the following assumptions:

s
‘ l‘
v - 107 -

~
. Pl
1 l‘:
;
L
RN |
L3 |
"

e e e e e
e f\{_l A NN a‘:‘+‘¢' NN V':v‘f‘ AN w NN

» e i

W W Lafl ave a*n o B o'l o'l 2 A B o a8 S Sl Sal Sal Sak Salt. Sad ‘Al Al Al G- A A%e Ade lva St & o At B Aok Aol dolk Aol S skt et R e b bl abh el atd ol b A dtial ol Al s "!T"""
o
A,
e
e
Qp
"Sz ‘ 4.1 Basic Operation Concepts of the CGCS
s (1) The crucible is a straight right cylinder.
Ve, (2) The amount of boric oxide encapsulant remains constant.
-
:H; (3) The semiconductor melt fills the entire diameter of the
oA crucible, and material added to the crystal reduces the
N height of the semiconductor melt in accordance with the
conservation of the total mass (melt plus crystal).
f{ While assumption (2) 1is reasonably justified in the case of
:W gallium arsenide throughout the entire growth process because
o

the boric oxide encapsulant does not wet the crystal, this
oy does no more apply to the other two assumptions towards the
' end of a growth cycle: The transition between the crucible
wall and bottom is always a bevel with a finite radius; and
the semiconductor melt tends to contract itself due to surface

:\ tension and recedes towards the center of the crucible if its
> amount drops below a certain limit. In an extreme case, the
:j: above assumptions have to be amended as follows:
'
,, (1) The semiconductor melt forms a cylindrical disk with con-
e stant thickness whose diameter (rather than thickness)
-l decreases in order to supply the material being solidified
b in the crystal.
. (2) The gap which opens up therefore between the semiconductor
melt and the crucible wall is filled with boric oxide
a5 encapsulant, which reduces the effective boric oxide
. height as the crystal grows.
X The diameter evaluation algorithms used in the CGCS are cap-
e able of handling both extreme cases, and any arbitrary inter-
mediate stage, according to the value of the Variable ALPHA.
o An ALPHA value of 1 corresponds to the first set of conditions
= (when the semiconductor melt fills the entire crucible diame-
i ter), whereas a value of 0 conforms with the second set (i.e.,
::‘ extreme melt recession). Values for ALPHA between 0 and 1
NN permit to model an intermediate stage between the two extremes
[] in a heuristic mode: Most likely, the disk formed by the
M receding melt does reduce its thickness when the melt is used
;i up by the growing crystal; the speed with which it does so
*Y may, however, be considerably less than during the regular
L{ growth. An ALPHA value less than 1 but still greater than

zero will therefore be appropriate during the final growth
o stages. Since crystal growth will always start under condi-
‘
Y

e tions corresponding to the first set of assumptions, ALPHA is
i~ initialized with 1, and remains at this value unless it is
e explicitly set to a different value.
AN
-f.‘f
AL
0.,
o - 108 -
~
\-
l.:_:
.
'\"
L]
L
W
f
)

R N N N a s
‘v, M

AN R € T TR e W W W ', o . L ¥ BRGACM
.r& ‘-’2}{2‘&“*"*&:‘:‘*""‘5\ MO \ata

e, Pl AP Lo T
L] A » . . - » ~
RGN Ll PR AN A A A

o,

N

Ilfl..

TR P BAE A
TR T TR TR TN T R T TR T W T YO T T O N T R T T A e R T TR TR Py T HTRTR TN T TRT W TN TR TR R8T RN TN Ll o

4.1 Basic Operation Concepts of the CGCS

The RESET command is closely linked to (and required by) the
diameter evaluation routines. It initializes the shape infor-
mation required for the buoyancy compensation under the as-
sumption of a cylindrical seed with the diameter specified
with the INITIALIZATION command (or sequence) which passes
thrcugh the entire boric oxide encapsulant layer, and it pro-
vides initialization values for the crystal length and weight
calculation. Furthermore, a RESET command resets ALPHA to 1
and cancels all effects of a possibly different previous ALPHA
value.

- 109 -

S -."‘,'/."'-‘ .'JI"'."-I}:‘I._-’J',JJ'\IJ ﬁﬂ','}-’-r:f-f -f*'f x ".'$ v\v""
K T SO e DS IRIR M, _A-P'.A.YA[.L..A_‘.A._'J}A}A:' FAIIN M‘f‘f‘fﬁfi

ol e AL AL A |

P

4.2 Starting the CGCS

O

4.2 starting the CGCS

The Czochralski Growth Control System (CGCS) is started from
RXISIS-II, but it is a genuine real-time process control
program which is independent of the RXISIS-II1 environment.

} v B B J

K X

NOTE: The system needs the CGCS system disk permanently in
drive 0. The operator must by no means exchange this
disk unless prompted to do so (see the EXCHANGE com-
mand) . To be save in the (improbable) case of a disk
error on the system disk, a second system disk should be
kept at hand which must, however, be of the same system
version. The system will crash inevitably at the attempt
to install a disk in drive 0 which holds a different
CGCS version!

- i
" FRrAASL

3

The CGCS 1is invoked from RXISIS-II like any other RXISIS-II
function, namely, via a call by its name, CZOCHR. Provided
the disk in drive 0 holds a valid copy of the CGCS, it will be
loaded, and a sign-on message is displayed. During this ini-
tialization, the system checks whether the A/D Converter hard-
ware is installed and operational, and it enters into a Test
mode if this is not the case. A message "Test Run" is dis-
played if the A/D converter does not respond properly, and
input from the A/D converter and output to the D/A board are
suppressed. This feature permits testing of the CGCS software
in an environment which does not provide the hardware inter-
face to the puller; running the CGCS with disabled inputs
allows, in addition, to simulate input parameters for testing
purposes. (Analog I/O can also be suppressed under software
control in a fully equipped hardware environment; compare
chapter 4.7.2.)

ER)
..

SOy e

A
A

..-
«
LR AT ar S

A ~ S

\’

Among may other initialization chores, the CGCS disables the
BREAK key on the console terminal, and enforces a duplication
of Monitor output on the printer. All inadvertent entries
into the Monitor program will therefore show up in a Documen-
tation printout.

s

[BN YY AR

During the entire growth run, the CGCS checks the integrity of
its program code periodically. RXISIS-II should be re-booted,
and the CGCS re-started as soon as possible if a memory error
is reported in order to avoid unforeseeable reactions of the
system.

o

.
'Y
PRI

Subsequently, the CGCS prompts for the current date (which is
not updated even if a run extends beyond midnight) and time,
and for an arbitrary run identification code. Date and time
must be entered in the format displayed by the CGCS; the sec-
onds can, however, be omitted (they will be assumed to be zero

lll"
AN

‘l.‘f‘

- 110 -

- l‘-

)

0 +

in
e
-’
+
".

w.
) Wiy)

T LRI R
TN *wﬁ\'_ﬁ \'I,',:.

LR S IS AR A I T SV A e] U e o, o Wy Ay W L e
D N I M RN AN AP Sy -r‘::") a
. 1, W n N BANAN A A XaN AaAAS o B W B - »

3
«

P
il o

o

P e o))

N 4.2 Starting the CGCS

in this case). The date and time entries must be acknowledged
by the operator; a plain "Return" in response to the confirma-
tion prompt will accept the data displayed in the top line of
the screen.

-~
&y

AN Yy

‘-

R During the initialization of the system, some commands are
o automatically performed by the CGCS, thus saving the operator
typing and making sure that all required information is enter-
ed. The system permits to open a Documentation output file
(otherwise done with the DOCUMENTATION command), and requests
a set of constants (see the INITIALIZATION command). Finally,
the Command Interpreter's prompt "Please command:" is dis-
played, and the CGCS enters its regular operation mode.

Y- ‘e

--,. v‘_
SR SR RE ‘bl Wb AL
! ‘:i;?;‘ ;Si1l'

L dd
]

oex

W)

,.
n‘

DR M
NI
Pl

.
w

<

Sasststn
l.'i. ‘.(_.l

3

-
«
a_e

i

Y et
>

o

Iy
.

e e

- 111 -

A e .’-'d‘i"-{'v‘(w.’-‘"‘-q'l”fq’q'{-f\f-')
> \-"‘- \.,,\ *\N"- ‘h“a ',\',. '\\ ..

v Wy R, T, T} By R, TRE WL TEE, TR, T Y.

L)

‘. ‘._ - 4N ,.'w " . - Ll .’- sn,*- w
U ’

' R Rt t.".\ 0, 4%, .ﬂ:‘,n‘. 0 .a.l.m "' ’ K

WMy Wy @ g™ T Wi W WL W e ™
,:& S aS AN
AR T AN

1.{'::.";' e g
Gt _

n",{
Cl i

SRR -
. i .) P d
NN~

"<}

=) ‘f.,.-
AN '.} ‘

I'I’

cESL
[N
A,

&

Y

S gy
LY

LY

-« w g,

LA

4.3 Command Set of the CGCS

4.3 Command Set of the CGCS

4.3.1 General Remarks

The operation of the CGCS is determined by independent com-
mands which are interpreted by the Command Interpreter (one of
the CGCS's iRMX-80 tasks). There are two types of commands,
namely, Internal, and Macro commands. Internal commands are
directly executed by the program; they provide the basic con-
trol functions. Macro commands, in contrast, are in fact disk
files which are read when their name was entered as a command.
These disk files hold, in turn, one or more Internal commands,
with a time information attached. These Internal commands are
therefore not only executed in the order in which they were
recorded on the file but also with the same timing. Macro
command files can be generated either by directly recording
the commands entered on the console during a growth run, or
with the Macro Command Editor COMMED.

Internal commands are generally invoked interactively, i.e.,
the operator is prompted for more information if necessary.
Some of the Internal commands can be entered in one single
command line, which simplifies the dialogue between the system
and the operator significantly. All items which may be speci-
fied together with the command keyword are listed in the sum-
mary of Internal commands in chapter 4.3.2. Commands which
are likely to affect either the growth process proper, or
essential functions of the CGCS, require, in general, a recon-
firmation of the data entered by the operator with an explicit
acknowledgement response (e.g., "Y(es)"); any other entry,
including "Return" only, cancels the command.

All valid Internal commands and the descripticns of their
purposes are listed below in alphabetical order. It is ob-
viously not possible to give a similar list of Macro commands
since they may be freely defined by the operator. It is
therefore up to the operator to keep a record of his Macro
commands and of their functions.

The following syntax is used for the Internal commands:

CAPITALS constitute the part(s) of the command which must be
entered exactly as specified.

lowercase parts of the command keyword are optional. They are
specified here for clarity and may also be typed in but
are ignored by the Command Interpreter.

Items in angular brackets < > have to be replaced with the ap-

- 112 -~

] ‘n,'\ LI T
...... .'1‘. AL .."‘l o

ER AP AP A e
-y

b e

C

‘.'.;.‘.‘.‘-'v

-
"

e

I R B
L{m".x{

R
7

NP A RO AR
'
)

Tlrra WAL

LA

- e - - -
'R % 1

el N

-
Y

Do

Y, Va ks

.-h

4.3 Command Set of the CGCS

propriate contents, e.g., a parameter value or a Macro
command name.

Items in square brackets [] are optional and may be omitted.

Items included in braces { } and separated by a vertical bar |
are optional but one item of the list must be specified.

Items must be separated by at least one space (except within
file names).

Note: Commands may be issued in arbitrary order. A command
is, however, only recognized when the prompt "Please command:"
is displayed!

4.3.2 Summary of Internal Commands

CALCulate [(RII]H}]

CHANge [{D|Tn|SL|CL|SR|CR|PL|<varname>}[<value> (<time>]]]
CLEAr [<varname>]

COMMENT [<arbitrary text>]

DATA

DEBug [C [<varname> [{1]2]3]|4}]]]

DEBug [C [<hexaddr> [{A|I1|I2|R|H1|H2|H4} [(1]|2]|3]|4}]1]1]
DEBug [D [{<varname>|<hexaddr>}]]

DEBug [M [<varname>]]

DEBug [M [<hexaddr> [{A|I1]I2|R|H1|H2|H4)]]]

DEBug (O [{1]2(3]4}]]

DEBug [R [{<varname>
DEBug [S [{<varname>
DIRectory [(0]|1}]
DISPlay [<varname>]
DOCUmentation

DUMP

END

EXCHange [{0]|1}]
EXIT

FILEs

HELP or ?

IF [<varname> [(<|=|>}[{<]|=|>}] [<value> [<macro>]]]]
INITialize

MODE

PLOT [{<varname>|<hexaddr>} [{(1|2]|3][4|5|6]|7]|8)])]

QUIT

RESEt [<initial weight> <initial length>]

RESTore

SET [(D|Tn|SL|CL|SR|CR|PL|<varname>} [<value> [<time>]]]
STARt

<hexaddr>}]]
<hexaddr>}}]

- 113 -

- P DR S VLN) NS AN S v-'.-.""-..--’_l-.’-‘--"'- -__--_-h‘rl-',.-...-'.._.-"‘- -1"."-'-f.d'.f’f-f‘-’.(..ﬂh-\"
NS R Ce g A A w..."'x"\’x SR N IS Y e ,*f\. AN

o AN i
[y

«
g

) W
¥

: @

PP

15 «_'lx, o

, SN s
o o 5
,:’,‘.',; £ n i
S

e
v
Dar s

r ‘s

-
gy s

- -
»
5

v
o =]

s

“;5 «
9 I"
Pals

a

DLy -

.
PR

P
PR

R

V

.;‘ -~ -l' 'l',-' .

L0

>

N

ROLYS

L 4 l;““
AR TR

O

R o
»

.
<
Fary

.l.l‘/l

,4
o
AN

S

ey

°
| 4

..,.
A A Y
FIANF R Y
« a LI B 4

YRS
.

AR

"-. o
«Tut

-

F'y
I
2

p

X A OGO A W A SRR LA T, CRUR TR E RN, AR R ¢S
™y o,":?"t. u@ OJ‘:‘J.A 0, . LGN wy U O e o A O O

4.3 Command Set of the CGCS

4.3.3 comprehensive Description of the Internal Commands

CALCULATE: This command permits to calculate the sum, the
difference, the product, and the quotient of two numbers.
The input format and the treatment of the numbers depends

on a switch entered with the command: The switch is "R"
for floating-point ("REAL") numbers, "I" for integers
(which must lie between -32768 and 32767), and "H" for

hexadecimal values (e.g., memory addresses) which have the
same numeric range as integers. Input values are expli-
citly requested in any case. The result is displayed in
decimal and hexadecimal form, with the internally used
hexadecimal format for floating-point numbers if applica-
ble.

CHANGE: This command permits to modify the value of one of
the nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible 1lift and rotation
speeds, and power limit), or of an arbitrary system Vari-
able (see chapter 4.7 and Appendix 11). CHANGE determines
the current value of the specified parameter and adds the
input wvalue to it, thus permitting relative changes.
Since the actual execution of the command is kept separate
from the operator interface, the actual value of the tar-
get parameter may differ from the one displayed during the
processing of the command if the target parameter is being
ramped when the command is issued. Setpoints which are
used as an input to a controller (e.g., the Temperature
setpoints in Diameter controlled modes), are displayed
with the values output by the controller. CHANGE permits
a smooth transition of the parameter between its current
and its final values by allowing a transition time during
which the parameter is ramped (see remarks about parameter
ramping in chapter 4.4). The transition time may range
from zero to 9999 minutes (in fact, longer transition
times are possible but cannot be displayed any more). The
shortest non-zero transition time is one second; this
value is used for all non-zero transition time values less
than one second (0.017 minutes). The CHANGE command may
be completely entered in one line, or in any combination
of items. It may be recorded to and executed from a Macro
command file.

CLEAR: The command CLEAR removes pending Conditional Macro
commands from the Conditional Command queue. It may be
used to branch between Macro commands if a condition spec-
ified with an IF command is not met within a given time.
There are two types of CLEAR commands: An unconditional

- 114 -~

o o

AR
G)

o "
ARRT ALY
‘l..)

Mt

NNy 4.3 Command Set of the CGCS

\ CLEAR which removes all pending Conditional Macro com-
‘ Kc mands, and a Selective CLEAR which cancels only those

- Conditional commands which refer to the Variable specified
. with the CLEAR command. CLEAR can be recorded to and
- - executed from Macro command files.

COMMENT: This command inserts one line of comment into the
Data output file. The comment line is tagged with the
operation mode, time, and length grown information and
embedded between the (binary) records in the Data file,
thus permitting the correlation between arbitrary events

- and the data recorded. Even if no Data file is in use,

the comment line is recorded in the Documentation output.

g (In fact, the COMMENT command is the only one to provide

; b: arbitrary text in the Documentation output.)

N |

o
‘"

b 8

re DATA: The DATA command permits to open or close the Data out-
™~ put file. It offers the operator to open a Data file if
b there is no open such file, and it permits to close the
s Data file if it is invoked while a Data file is open.
k. After a disk error, the file which was involved in the
. error is flagged as "inactive". Not reactivating an inac-
. tive file is equivalent to closing it. The functions of
¢ ‘ DATA may be also accessed through the FILES command.

DEBUG Continuously: One member of the DEBUG command group,
the DEBUG Continuously command permits the continuous
display of the values of up to four system Variables. The
data output provided is updated at the same rate as the

. ! fixed screen output (once every five to six seconds). (In
v, fact, the memory locations specified with DEBUG Continu-

ously are sampled once every second; their values are also
;o recorded in the Data file.) Data can be selected for
a2 display either by specifying a Variable name, or by sub-

g mitting the hexadecimal address of the memory location(s)
o whose contents are to be displayed. In the latter case, an
additional format information is required since DEBUG does
not know what kind of data resides at an arbitrary storage
i location in memory. The display formats available are
ASCII (A), interpreting one byte at the specified address
as a (printable) character, one and two byte decimal inte-
gers (Il1 and I2, respectively), decimal floating-point
(REAL - R), and one, two, and four byte hexadecimal repre-
sentation (H1, H2, H4). Finally, one of the four DEBUG
output channels (numbered 1 to 4) must be specified to
which the output is to be directed. (Channels 1 to 4 are
4 displayed in the DEBUG output line on the console from
1 Y

RS

t;l

e
~ %

.
T

s

— ¥

- 115 -

L)

c‘..‘c..':‘?':‘:.‘:‘g‘- .

Y
\:_\
NN
.,
L
';fj 4.3 Command Set of the CGCS
BN
- left to right.) The DEBUG Continuously command may be
’ completely entered in one line, or in any combination of
N items. It may be recorded to and executed from a Macro
O command file.
i
;I: DEBUG Display: The DEBUG Display command displays the con-
v tents of one or several adjacent memory locations which
Al have been specified either by a Variable name, or by a
Jed hexadecimal address. (For displaying the contents of a
S Variable in its standard representation, the DISPLAY com-
O mand is probably more convenient.) The four bytes start-
RS ing at the given address (or part of them) are displayed
as ASCII characters, in hexadecimal notation, as one and
. two byte decimal integers, and as (four byte) floating-
o point numbers. The command may be completely entered in
- one line, or in any combination of items.
s DEBUG Modify: This command permits to modify one to four
.,; bytes in memory whose starting address must be specified
. either with a Variable name, or as a hexadecimal number.
.- - The program knows how many bytes have to be modified to
SO change the value of a Variable specified by name, but the
data format has to be submitted separately if a hexadeci-
mal address is used. The formats available are ASCII (A),
(interpreting one byte at the specified address as a
] (printable) character, one and two byte decimal integers
;ﬁ (I1 and I2, respectively), decimal floating-point (REAL -
o R), and one, two, and four byte hexadecimal representation
?q (H1, H2, and H4). The program displays the current con-
A tents of the specified location(s), and prompts explicitly
) for a new input value. With the exception of the new
'y value, the entire command or parts of it can be entered in
b one command line. (For changing Variables specified by
':2: name, the SET and CHANGE commands are probably more conve-
Foe. nient; in addition, they offer the ramping feature which
oV is not supported by DEBUG.) The DEBUG Modify command can
_Q\ be recorded to and executed from a Macro command file.
.f~
I
2 DEBUG Off: While DEBUG Continuously turns on the output of
o Debug data, DEBUG Off turns it off again. The location (1
N to 4) which is to be turned off must be specified. The
Q. command may be entered in one or in two lines. It may be
v recorded to and executed from a Macro command file.
s
J’S./'
S
"
9.,
77 - 116 -
w3t
WOy
\-’
N
o
%

’A

;*,\\"» S [P PR e S T T T T e T T T T T T s Vo Wt T e S L RS LW
PSS AT PO IEAC A M NS S TN W) A AT A : (el
O AR R AT, A G R R AR L OV G G SR SRS e

1

[RN

- it

N 4.3 Command Set of the CGCS
<
\]

DEBUG Resume: This command affects the internal operation of
t{ the system. It should only be used for debugging pur-
st poses. Therefore, no further information is given here.

}-.{‘.

>

(]

\
|
\
DEBUG Suspend: This command affects the internal operation of
the systemn. It should only be used for debugging pur-
poses. Inconsiderate use of this command may disable the
CGCS entirely. Therefore, no further information is given
here.

Defalyiy ~

I"-‘ .

LN
5 " "2
* AL

DIRECTORY: The DIRECTORY command displays the contents of the

directory of the specified disk. 1In addition to the file
a2 names, the disk label and the numbers of sectors in use
A and free on the disk are displayed. Note: The actual
) number of sectors in use may be much greater if a file is
- open for output on the specified disk. The actual number
~ of used sectors cannot be determined, though, since it is
' an internal parameter of the operating system. The num-
- bers displayed for the used and free sectors are, however,
R preceded by a ">" and a "<" sign, respectively, in this
" case. The command may be entered in one line.

PLSPlCalall -
xr

‘ n DISPLAY: This function displays the value of a Variable sub-
; mitted as a parameter with the call. The command may be
entered in one line.

" DOCUMENTATION: A call to DOCUMENTATION permits to switch on
) or off the Documentation output on the printer or on a
. disk file. DOCUMENTATION offers to open a Print file if
" no such file is open, and to close it if it 1is open.
& During the file opening procedure, DOCUMENTATION permits
to set the interval between Data Dumps to the Documenta-
J tion output (compare command DUMP). Any arbitrary inter-
‘: val between 1 and 255 minutes may be specified; periodic

£s

P4
ey

ey Data Dumps may be disabled altogether. After a disk er-
ror, the file which was involved in the error is flagged
as "inactive". Not reactivating an inactive file is equi-
valent to closing it. The DOCUMENTATION routine is auto-
matically invoked when the system is started; it may also
be accessed from the FILES command.

I‘?l?

e
| >

ree

x

DUMP: This command initiates a dump of 21 system parameters
K (essentially, of the measured data) to the Documentation
< . output. In addition, it triggers one record written to
the Data file.

v

>,

- 117 - 1

) e
BT O A N T NI L MO M o D o Y SR
“":2.\.!\.- .] * " I J Aol ':‘“- N0, N, W A AE ‘s.'l'o Worm . W AT RCRLT AR,

€ -n.'*-r-,f\-(.a LY T
N S L S "
N . L R0, 00 S ~ o-.,,-hc.},'

e RAniesa e T i il i it A S ok e Aan tud Sul Sol Nl v g vl Sal taf Vadl Sul tol Uol Sof Nl Sud Sed S ke St A A Sl Y TR M B T It e e T Be. I R '.11
LA
o
[0
. -
LA
o 4.3 Command Set of the CGCS
0 END: The END command is the official way to terminate a com-
(mand record in the Control Output file (which eventually
o may be used as a Macro command file). Although no more
e, entries are added to the Control Output file after an END
SR command, the file remains open, and the next record may be
gy started at any time with a START command. (This permits
WK to use one Control Output file throughout a growth run to
) which certain command sequences are recorded; the records
e in it can be separated into several Macro command files
oy using the Macro Command Editor. Note, however, that an
e END command preempts a Macro command file used for input
o regardless of whether there are more commands after the
oy END command or not.)
-;{ EXCHANGE: This command permits to exchange a defective or
ol full disk safely. It closes the files on the specified
zﬂiﬂ disk which are still open, prompts the operator to substi-
TN tute a new disk, and re-opens all files on the new disk
La: which were open on the old disk when the operator indi-
_’j cated to the system that the new disk was installed.
N Since the output files are opened with the same names on
:Xx the new disk, any file with an identical name on the new
(- disk is overwritten. 1In addition, the output files need
“:g{ some editing because control structures used on the Data
. and Control Output files are not provided by EXCHANGE.
(i (It is sufficient to concatenate the two output files with
g the ISIS-II/RXISIS-II COPY command, or to concatenate the
Sy second part of a Data or Macro command file with a separ-
;tﬁ ately generated file header.) Note that a Macro command
- will be preempted which is being read from a disk which is
o to be EXCHANGEd.
L "
';R EXIT: The only regular way to leave the CGCS is the EXIT com-
;;J mand. Depending on the current operation mode, the EXIT
:j command "cleans up" the controller. It stops the 1lift
LS motors if the puller is under the control of the CGCS,
] reduces the heater power to zero within six hours (unless
?H; the power is already zero), stops the rotations, and re-
WO linquishes, finally, control to the analog controller.
Qﬁf Several safety procedures prevent the accidental execution
Qﬁ% of this function.
Dt
Q.-
R FILES: This command displays the current status of the Print,
}; Data, and Control Output files and their names if the
v files are open. Subsequently, it permits to open or close
T~ one of the three files, entering the respective DOCUMENTA-
N TION, DATA, and Control Output file handling routines.
0.,
‘.o:i J - 118 -
N,
A0
WA
.:o"‘t

.
sa

OO, M

i

o .,
v "

Y PR eI LA

-

s

‘ll'.'.'

RNt

i

& AT

]
14
y
p
v

~i

- ‘\-.‘l-v

RN

’ o
AN

A

e
L
a

P30

'\-"“, ‘;i\ J,\ : .

4.3 Command Set of the CGCS

After a disk error, the file which was involved in the
error is flagged as "inactive". Not reactivating an inac-
tive file is equivalent to closing it.

HELP: The HELP command (or, alternatively, a simple question

mark ("?")) provides a set of command menus on the screen.
The menus displayed comprise a summary of the Internal
commands, the currently available Macro commands, and an
extensive explanation of each command. The Macro command
list and/or the extensive help display may be skipped if
not needed.

This command permits the conditional execution of a Macro
command (it does not work with Internal commands). The
Macro command specified with the IF call is executed if
and when a condition is met which is based on the numeric
relation between a Variable and a constant which are sub-
mitted as parameters of the IF call. The numeric rela-
tions may be "greater than" (">"), "equal to" ("="), "less
than" ("<"), or any combination of two of these three
("<>" stands for "not equal"). The order of the relation
characters does not matter; "=>" is identical to ">=" and
means "greater than or equal to". Eight (8) Conditional
Macro commands may be pending at a time; any Conditional
command issued while the maximum number of commands are
pending is ignored, and a pertinent error message is dis-
played. The command may be completely entered in one
line, or in any combination of items. It may be recorded
to and executed from a Macro command file.

INITIALIZE: This command permits to assign values to certain

N AR N BTN LA T A P O AN

system parameters which cannot be (easily) changed other-
wise since they are kept in memory in a pre-processed form
to facilitate control operations. The values set with
INITIALIZE are the diameters of the crucible and the seed,
the amount of boric oxide used, and the densities of the
solid crystal, the crystal melt, and the boric oxide melt.
Since these values are, in most cases, hardware dependent
constants anyhow, INITIALIZE offers default values which
can be accepted with a plain "Return", or overwritten by
new data. INITIALIZE is automatically executed when the
system is started; it must be called during a growth run
when the crystal is melted back partly, and growth is
resumed with a full-diameter crystal within the boric
oxide melt. In this case, the diameter of the crystal
must be specified as a seed diameter, in order to provide

- 119 -

v F)
. a_\l,.l\.l.&'s

S .

r— ' .
ARARERN BARRIAR

&

4.3 Command Set of the CGCS

a correct diameter evaluation after a subsequent RESET
call.

MODE: The MODE command permits to select one of five opera-
tion modes which are numbered 0 through 4. Each mode is a
inclusive set of the functions of the preceding one. Mode
0 ("Monitoring") provides monitoring without control, Mode
1 ("Manual"), a basic control but no closed-loop diameter
control. The latter is possible with Mode 2 ("Diameter")
which, however, does not include an anomaly compensation.
Mcde 3 ("Diameter/ASC") provides anomaly compensation, and
Mode 4 ("Automatic"), in addition, a Crucible Lift control
which is based on the exact amount of melt withdrawn from
the crucible during the crystal growth. Each mode change
is reported by the system, and an automatic Data Dump is
triggered. The MODE command may be recorded to and exe-
cuted from a Macro command file.

PLOT: The PLOT command permits to output continuously (simi-
lar to the DEBUG Continuously command) the values of up to
eight locations in memory which can be specified by Vari-
able names or by absolute hexadecimal addresses. While
DEBUG Continuously routes its output to the operator con-
sole and the Data file, the PLOT output is directed to
eight spare channels of the D/A converter which are con-
nected to a suitable chart recorder. PLOT can only handle
Variables which are in INTEGER*2 notation, which applies
to all measured parameters and control output signals, and
to a number of internal system parameters (compare chapter
4.6 and Appendix 11). A number of auxiliary locations
were provided which hold "expanded" values of parameters
of which only a narrow numeric range is of interest. For
further information on the PLOT command, refer to chapter
4.6. The PLOT command may be recorded to and executed
from a Macro command file.

QUIT: The QUIT command permits to preempt a currently active
Macro command.

RESET: The proper operation of the diameter evaluation rou-
tines requires a RESET command at the beginning of the
actual growth. The RESET command resets the length grown
counter and the weight output to zero or to values speci-
fied with the call, and initializes the internal data
structures of the diameter routines. It is indispensable
to issue such a command after each INITIALIZE command

- 120 -

O g
Suat

SET:

W TR T W W W W RN T T S T YW ET T T I TR T RO TN R TETRTIETRTRTOY R TR LN LY W W T

4.3 Command Set of the CGCS

(including the one automatically performed at the begin-
ning of the CGCS operations), and after each irrecoverable
"Speed overflow" error, when the puller is again in a
well-controlled condition and growth can resume. (Other-
wise, no new diameter output is generated, and diameter
control is not possible.) A RESET command which sets the
crystal length and weight to zero is automatically gener-
ated 1f necessary when the operation mode is changed to
one of the diameter controlled ones (Mode 2 through 4).
It is possible to maintain the current length and weight
values with a RESET command either by answering the perti-
nent questions accordingly if in the interactive mode, or
by specifying a value for the parameter to be maintained
which is less than twice its most negative value (i.e.,
less than -16000 for the crystal weight, and less than
-1200 for the crystal length). The RESET command may be
recorded to and executed from a Macro command file.

RESTORE : The RESTORE command restores the console output if

it was corrugated, which can happen very easily if one of
the function keys on the console terminal is pressed inad-
vertently, or if the "Return" key is pressed while the
cursor 1is in the bottom line of the screen, e.g., after
the entry of a full input line of 80 characters. It does
not affect the actual control operations of the CGCS.

This command permits to modify the value of one of the
nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible lift and rotation
speeds, and power limit), or of an arbitrary system Vari-
able (see chapter 4.7 and Appendix 11). It sets the
specified parameter to the input value, thus permitting
absolute changes. SET permits a smooth transition of the
parameter between its current and final values by allowing
a transition time during which the parameter is ramped
(see remarks about parameter ramping in chapter 4.4. The
transition time may range from zero to 9999 minutes (in
fact, longer transition times are possible but cannot be
displayed any more). The shortest non-zero transition
time is one second; this value is used for all non-zero
transition time values less than one second (0.017 minu-
tes). The command may be completely entered in one line,
or in any combination of items. It may be recorded to and
executed from a Macro command file.

- 121 -

LA AN AT

B o Tt I Sl A AN Aot avst i od s b SM ada" MAS* S s aat et Lottt taal el Jhet Yd At Adh SN AN AT A A BB A aChis - K“vv‘*‘;"—"—'_‘-—\w

A,
{- « .’k“. L

[4

* “'l ‘l,.l 1. 5 u"'nﬂ.a"

4.3 Command Set of the CGCS

r L
N

START: This commands starts the recording of commands in the
Control Output file. If no such file is open, START per-
mits to specify and open a Control Output file. Command
times recorded in the output file are relative to the time
of the START command. (For example, a SET command issued
35 seconds after the START command will be executed 35
seconds after the Control Output file was invoked as a
Macro command during a later run.)

L4
).'-;'

*

- XN
) s
Pd }?-‘ & 4;. ~/) a"/ ’»"}

A
-s :‘ ." :‘ -.'}

.;%{

l' []
Al
Ny

1

h j
- \.5"'1"
[N

=

- e
¢ e

AN

AR

[y

o
'.-,’) P

N
»me

R Y
et O

£

-

A N0

FFES
AR

» &
L,

122 -

e
i

.;:
'

”,

L PP I LA UL L PR PR "% Wy Vg Cu o o " 8 o« o 0 W W W Wy Y o W W Wy Wy o vl'

o A S R R A A T R L R A R R R R R B A R i
(N . LBy B 85, 0% 0% 0% 3% 1% A 0% W5 3. . 8% 379 W% 2% '

1, %0,

i)
N

AR

"
¥,
4,

\ - n 8" agm L) oy X Cu ¥ L e { w ‘ ", W W o, ™ ; ‘
l‘o‘:‘-‘f‘.l, .:'f WS, 0!‘. ,wfﬂ .'.if',!. o, e AT TR0 o?‘.o.c, WY .:'l.t'lfo .:'.G.o'ﬁ.o 0.:".. X .o 0 i WM Y T N

b
LAY WL

.’. l'

231e

R

P

4.4 Parameter Ramping

4.4 Parameter Ramping

Parameters entered with the SET and CHANGE commands may be
ramped linearly between their current values and the final
values specified with SET or CHANGE. Arbitrary ramping times
between 1 second and 9999 minutes may be used. Up to 20 pa-
rameters (primary system setpoints or arbitrary Variables) may
be ramped at a time, no matter whether the pertinent commands
were entered from the console, or from a Macro command file.
The number of parameters which are ramped at a given time is
displayed on the console screen. Note: A SET or CHANGE com-
mand requesting parameter ramping which is issued when already
20 parameters are being ramped will be executed instantaneous-
ly, without ramping. Watch therefore the number of ramped
parameters carefully when you use extended ramping and/or
Macro commands. A SET or CHANGE command referring to a param-
eter which is already being ramped does not increase the
number of ramped commands. Parameter ramping can be halted by
commanding CHANGE <parameter> 0 0 (change the parameter by 0
within 0 minutes).

- 123 -

-

'~' 5- W, *'\. r*' 3 ¥

P i o A et ek L e Jintt ol et oliat Agrt ol s o

4.5 Macro Commands

4.5 Macro Commands

All operator entries input when the "Please command:" prompt
is displayed are first compared to the list of the Internal
commands. If no match is found between the first four charac-
ters of the operator input and any one of the Internal command
names, the CGCS assumes that a Macro command was requested,
and searches the system disk in drive 0 for a file with an
extension "“.CMD" whose name matches the operator entry.
Therefore, the following rules apply to Macro command names:

(1) Macro command names may consist of one to six alphanumeric
characters; the first character must be alphabetic.

(2) The first four characters of the Macro command (three
characters if the command begins with "DEB") must not
match any internal command name. (Note, though, that com-
mands whose keywords are shorter than four characters have
their names padded to the right with spaces. The name
"SETPNT" is therefore a perfectly legal Macro name.)
Macro names which are part of a Conditional command are
excepted from these restrictions.

(3) A file with the name <macro>.CMD must exist on the disk in
drive 0, and it must be in the special Macro command for-
mat.

(4) Macro commands generally do not take any parameters.

If any one of the above conditions is not met, an "Illegal
command" message is issued by the Command Interpreter, and the
command is ignored.

Macro command files comprise a set of recordable internal
commands which are stored in a binary encoded format in order
to save disk space and processing time. Since references to
Variables are stored as the absolute binary addresses of these
Variables and since Variable locations may change when soft-
ware modifications are made, it is essential that Macro com-
mands referring to absolute memory locations are only executed
under the program version for which they were generated. A
warning is issued if the user attempts to execute a Macro
command which was designed for or generated by a CGCS version
different from the one in use, and all Internal commands with-
in the Macro command file which refer to absolute memory loca-
tions are dropped. (They are indicated to the operator,
though, with an appropriate error message.) Macro command
files generated under a previous system version have to be
converted with the Macro Command Editor COMMED into a valid
Macro command for the current system version.

R RA DR P 4

" -

- 124 -

RS

K ,
B
e~
kﬁ:ﬁ

q!

.

£ X

i < 4.5 Macro Commands
eI . . »
‘4% s Macro command files can be created in either of two ways:
~ " (a) By recording actual commands during a growth run, using a
}' Control Output file and the START and END commands, or

w o
N

Y (b) With the Macro Command Editor COMMED which can also be

7

used to modify command files recorded during a growth run.

-

The following Internal commands can be recorded on and later
executed from a Macro command file:

LIt
s

-
v
S 4

- CHANGE
¥, CLEAR

DEBUG CONTINUQUSLY
3 DEBUG MODIFY

O DEBUG OFF
S DEBUG RESUME
. .. DEBUG SUSPEND
> o END

Q" IF

7 MODE

.o PLOT

I RESET

L SET

Macro commands can be invoked frem a Macro command file, but

,~
-

o they are not recorded in a Control Output file. This was done
on purpose since a Macro command invoked from another Macro

S, command preempts the command file from which it was invoked.

- b (There can be only one Macro command file in use at a given
time.) A Control Output file generated during a growth run

. receives commands issued by the operator as well as commands

il stemming from a Macro, and it is not possible to distinguish

S between both. The operator generated commands interspersed

o with the commands originating from the Macro would, however,

~ be effectively lost if the Macro call were also recorded in

A the Control Output file. Replaying this Control Output file

~ as a Macro file at a later stage would simply result in the

% < Macro being preempted by the one which was invoked during the

_? o recorded run, and only the commands on the new Macro would be

YE executed automatically. This would deteriorate the self-

b learning ability of the CGCS considerably.

SR Note: Commands issued by a Macro command file remain active

j’ even after the Macro was terminated or preempted!

U

5 [

Y

p

>

e 1

\

- 125 -

-

] @ "R 2 d il
£ r
e

) LTV e Py
R L e s

t'.l’-’
2

el

3 .- -

e

l\--'

T 4.6 Disk Files
-,

e 4.6 Disk Files

{

2 Besides the Macro command (input) files, there are three files

-
)

available for output from the CGCS under the operator's dis-
cretion.

4 &

-
NI
s."‘-" R

-
Ed

PRINT FILE: The Print file receives the complete dialogue be-
tween the operator and the system. Each line of output is
tagged with the absolute and the system times; the date on
which the run was started and the run identification are
contained in page header lines. The Print file can be opened

!

oS

P S RPN}

g
-

e, (activated) or closed (deactivated) with the DOCUMENTATION
o command or via FILES. Print file output can alternatively be
sent to the line printer (which is indicated by ":LP:" in the
N FILES display), or to a disk file. Arbitrary (valid) file
N names and extensions may be chosen, and the file can be opened
ML on either disk drive. (It is recommended, though, that drive
AN 1 is used for the Print file output because the Print file
’}{ tends to become very bulky, and there is not toc much room
® left on the system disk.) In addition to the operator dia-
oo logue, Data Dumps are recorded in the Print file which contain
oo the following items:
- "-
iﬁj * Measured values of the three heater temperatures.
}&‘ * Heater power input and output values.
l‘ * Measured motor speeds.
y * Seed and crucible positions.
- * Crystal length and diameter.
::5: * Weight and differential weight.
‘}Q * Base temperature.
ﬂh * Gas pressure.
J In order to conserve space, the output items are identified
;‘i: only with two-character mnemonics:
e
'“?' Tl ... Heater #1 Temperature (in millivolts)
a‘Q T2 ... Heater #2 Temperature (in millivolts)
- T3 ... Heater #3 Temperature (in millivolts)
®) SL ... Seed Lift Speed (in millimeters/hour)
ot CL ... Crucible Lift Speed (in millimeters/hour)
e L ... Length Grown (in millimeters)
;:ﬁ D ... (Calculated) Diameter (in millimeters)
F.J
A P1li .. Demanded Power (Input) for Heater #1 (percent)
"f P2i .. Demanded Power (Input) for Heater #2 (percent)
‘“i' P3i .. Demanded Power (Input) for Heater #3 (percent)
g SR ... Seed Rotation Speed (in RPM)
S CR ... Crucible Rotation Speed (in RPM)
£ W ... Crystal Weight (in grams)
A DW ... Differential Weight (in grams/minute)
N - -
?w, 126
o
&h}
0.
Y
povin

T S T S e T S L T L R R N L (R AL AL L Y
T L B P P g R e e D T e e o Y A Y e T

T TR R TR T R LS Sl S8 0.0 dad L@ S S.d Sob Sof Sodl Sadl Sadl Ball Gofl Safl Sal Sak d Safl talk Snh ik Sad Gafl Sl el Sl Sl Rl Sadh Sal Sl Vel Sl Van A St e SN e e B T Al A
N W
\" ~ ‘
CHERN ‘
% " |
) |
‘ :: .
.:;;: 4.6 Disk Files 1
B ..-- ‘
A Plo .. Actual Power (Output) of Heater #1 (in percent)
I P20 .. Actual Power (Output) of Heater #2 (in percent)

N P3o .. Actual Power (Output) of Heater #3 (in percent)

e SP ... Seed Position (in millimeters)

NS CP ... Crucible Position (in millimeters)

NS BT ... Base Temperature (in millivolts)

S GP ... Gas Pressure (in PSI)

w, ¥

;::f Data Dumps are initiated in the following cases:

b
e * Upon a DUMP command.
N * At a change of the system's operation mode.

Aot * Periodically with a specifiable interval.
’ . o In the first two cases, a Data record is also written to the

o Data file.

e

2

C U .a .

f".ﬁ DATA FILE: All important system parameters can be recorded on

e ' the Data disk file. A set of data is compiled in regqular

e intervals and written to disk. With regard to execution time

s and disk space requirements, these records are written in a

:1 not directly legible binary format; special support software
P which can decode Data files and output selected channels, for
- . instance, to a chart recorder, is required. The following
(i items are contained in each data record:

e Operation Mode
R System Time
e Length Grown
kj Measured Data (17 channels - all data displayed permanent-
DN o 1y)
Sk Auxiliary Analog Data (8 channels)
N Power Output (3 channels)
Current Setpoints (9 channels - all data displayed perma-

‘S nently)

-r Auxiliary Setpoints (9 channels, as above)

-‘f Debug Continuously Addresses and Data (4 * 3 channels)

R Diameter

fﬁ;“f Debug Continuously Variable types (1 channel)

'%) Each channel holds two bytes of data; one record of 64 chan-
;. . nels (63 active, 1 spare) fills exactly one sector on the
; by output disk.

r& by, The Data file can be opened (activated) or closed (deactivat-
:x B ed) with the DATA command, or via FILES. Arbitrary (valid)
N file names and extensions may be chosen, and the file can be
Ko opened on either disk drive. (It is recommended, though, that
"" drive 1 is used for the Data file output because the Data file
éi - 127 -

\ » Ly [LT

OF W B ¥ TR TATL VLAY " e A Ry gy Ty
"k ,"".‘-‘.'o .-'0'0 .‘o’!’c"‘o'ﬁ‘ " !.':“.l. ..:‘ > A c"'u !'0.. ..'0‘! “.‘0"';"'- NN ~’u‘f.'t'-‘¢ » .."c'p -’o‘,

-
[

,ﬁ

22

A
it ¥ & °}

&
3

% ok ok 2% o5 o Sdla

N

.

I3

ad ‘-. ‘.‘ ‘-"'v}‘-

4y

2
-l. "' l.'

e

[l
0@

<

R
)

Y &
et

,-Qﬁ

»

Kottt S

SN S

RIS

A A L A S AR

4.6 Disk Files

tends to become very bulky, and there is not too much room
left on the system disk.) The operator has to specify an in-
terval for the data acquisition when you open a Data file;
there are about 1800 sectors available on an empty disk, and
each record consumes one sector. (The remainder of the sec-
tors on the disk is regquired for housekeeping.) Since it
should make sense not only to record data but also to process
it later on, it is probably a good idea to restrict data
recording to processes which are actually of interest, and to
choose the recording interval according to the dynamic be-
havior of the processes involved. (Once a Data file has been
opened the interval can not be changed any more. A new Data
file has to be opened if a different recording interval is
needed.)

CONTROL OUTPUT FIILE: All recordable commands (compare chapter
4.5) are recorded in a Control Output file if such a file is
open, and if the START command has been issued. A Control
Output file can be opened with the START command, and it can
be opened and closed with FILES. The file may be opened on
either disk drive, but it must be opened on drive 0 if it
should serve as a Macro command file within the same run. No
file name extension is required with the Control Output file
name; the CGCS appends automatically ".CMD". Command record-
ing can be deactivated with an END command at any time after a
START command; the Control Output file remains open, though,
until it is either closed with FILES, or until the CGCS 1is
EXITed. One Control Output file can hold multiple Macro
command records on the Control Output file which are started
and terminated with the START and END commands, but the file
requires editing in this case (with COMMED) before all these
Macro command records can be used. (Otherwise, the first END
recorded would preempt the Macro command, and all following
commands would be ignored.)

Note: During a growth run, a Macro command file can be created
for "instant use" in the following way:

(1) Open a Control Output file on drive 0 (important!) with an
arbitrary name, preferably using the START command.

(2) Enter the command(s) you want to have in the file but be
careful that you do not interfere with a growth run in
progress.

(3) Close the Control Output file (with FILES), and

(4) Use it as a Macro ccmmand when required.

- 128 -

T I T e T Tw e T e e Ce . “ T o A ey L I S T TS T TR
S AT B A A eSS NGy .-__.,-" ‘ N o e '., o AL

s, LAY

L 4.6 Disk Files

A Control Output file must be closed before it can be invoked
it as a Macro file.

PLOT OUTPUT: In contrast to tk above three ocutput files, Plot
Output is directed to an analcyg rather than a digital device,
namely, to a multi-channel chart recorder. In general, any
Variable whose type is INTEGER*2 can thus be submitted to the
chart recorder output, and so can any arbitrary two-byte memo-
ry location which is referred to by its address. This in-
cludes all measured input data (which are in INTEGER#*2 format
anyhow), plus a number of internal system parameters. (Refer
to the list of Variables in Appendix 11 to find the Variables
which might be of interest.) 1In general, the absolute values
of the Variables specified are output on the eight spare ana-
log output channels, scaled from 0 to 10 V for the full range
of 0 through 32767 of positive INTEGER*2 numbers. A message
is output on the console and recorded in the Documentation
output whenever a Variable changes its sign. (Initially, all
outputs are supposed to refer to positive values.)

(ATA

*
S

PP

CEs

ANE

In addition to the standard INTEGER*2 Variables, the following
variables obtained from a special treatment of internal data
were provided for chart recorder output:

A

2
1

(1) Heater and Base Temperatures: Four Variables, EXTMP1,
EXTMP2, EXTMP3, and EXTMPB, hold an expanded Heater or
Base Temperature value. The full range (0 to 10 V) of the
output obtained from these Variables is determined by the
Variables RANGT1, RANGT2, RANGT3, and RANGTB, respective-
ly, starting from an offset value which is set by the
Variables OFFST1, OFFST2, OFFST3, and OFFSTB. Like all
other Variables, these parameters can be modified with the
standard SET, CHANGE, or DEBUG Modify commands; their
values must be specified in millivolts. In order to PLOT
on the Chart Recorder Channel 3 the temperature of the
Heater 1 which is supposed to lie, say, between 22.5 and
24.5 mv, the following commands may be used:

v
e

SET OFFST1 22.5 O
SET RANGT1 2 O
PLOT EXTMP1l 3

Temperature values below the specified offset will result
in a zero output, and values greater than the offset plus
range values, in an output voltage of 10 V. Note that the
offset may be ramped, too:; this permits to record a devia-
tion from a given setpoint.

- 129 -

A "
L

-
v
-,
’.\
L2
\'(‘.
2
NS 4.6 Disk Files
AL
SN . .
N (2) Growth Rate: An expanded Growth Rate value is kept in

GRRATE. A zero output corresponds to a growth rate of

< zero (as calculated by the Diameter Evaluation routine
- SHAPE) ; the maximum output is reached for a growth rate of
R 20 mm/hr. GRRATE can assume positive and negative values
i:{ (the latter during meltback).
s
(3) Diameter Error: The Variable DIAERR holds the difference
oo between the Diameter setpoint and the actual diameter. A
;*g zero difference is output as mid-scale (5 V); zero and
#}g maximum output correspond to an actual diameter 10 mm
T smaller and greater than the setpoint, respectively.
el Greater deviations than 10 mm result in the proper minimum
or maximum output signals.
:}l (4) Crucible Position Error: Similarly, the Variable CRPERR
NN is set to a value corresponding to the deviation of the
AN actual crucible position from the calculated value. A
NN zero error is again represented as mid-scale; the maximum
re deviation which can be resolved is *# 10 mm. (The crucible

is too low if the output is less than mid-scale.)

2. Any PLOT channel can be activated by the command
‘<
o PLOT <varname> <channel #> or
PLOT <hexaddr> <channel #>

e The command may be entered in one line, or one item at a time
RN as requested by the CGCS. The system checks whether the type
g of the Variable specified is indeed INTEGER*2 (it assumes
NSRS INTEGER*2 locations if a hexadecimal address was entered), and
i attaches the value of the specified location to the proper
f) output channel. Channel numbers 1 through 8 are permitted.
A An output channel remains active and connected to a Variable
o until it is re-assigned:; output may be de-activated with the

o, L
Y PLOT ZERO <channel #>
S
_g, command. The analog output is updated periodically once every
p 7S second.
¢ ::’_::

%

T
.

'naﬂ

‘\.J,‘
g

Nyt

®.

‘::‘: - 130 ~-

'\l"'\

5"_‘-

>0

"'\

o

o
koo

g™ ST IR YA " T ol T, ”~ —f-’-l'.f-f--ﬂ'f' AR
» RO S *‘ ~~ PN n,:'.‘!'l‘...".‘.ou » -.C u'f‘."‘n » .:.‘.1. 1‘0’0 l_-'n % -\ >

‘f.;-f‘-r .o‘_.f,';&n._-'\'-r Y,
3= 0098 09,98, 0%, 28 ;A 's! Y,

B anih el g atod Sage Bk A S A B MM Su Rea A Sda-Alre- d

4.7 Variables

4.7 Variables

4.7.1 General Remarks

The concept of the CGCS permits an easy way to modify any
arbitrary parameter used by the system, a way which is cer-
tainly more convenient and safer than using the parameter's
absolute address in memory: A virtually unlimited number of
parameters can be accessed by a name unique to each parameter.
The CGCS looks up the actual address and the type of a speci-
fied Variable in a directory file; the number of parameters
accessible in this way is only limited by the reasonably ob-
tainable size of this file. The directory file has the name
CZONAM.Vmn, with m and n, the major and minor version code
numbers. It contains Variable names, addresses, and types in
a binary encoded form, and is generated from a source file
VARADD.SRC by means of a dedicated program CONVAD. The direc-
tory file must be updated for each new system version since
the Variables listed in it may have changed their addresses
due to program modifications.

Variable names must consist of one to six alphanumeric charac-
ters; the first character must be alphabetic. Variables can
either be simple storage locations, or arrays. Elements of
arrays must be specified by the number of the element (begin-
ning with 1), in parentheses immediately following the array
name. (There must not be a space between the name and the
opening parenthesis.) An omitted array element number de-
faults to 1. Valid Variable names are, for example, "TIME" or
YANAPAR(6)". The name may be entered in upper- or lowercase
characters.

Chapter 4.7.2 provides a list of special Variables which are
more than a simple parameter since their values directly de-
termine the operation of the CGCS. A table of the most impor-
tant Variable names, sorted according to their meanings, and a
complete list of all Variables used by the CGCS are provided
in Appendix 11.

4.7.2 Special Variables

System Control:

TEST This Variable puts the CGCS into a Test mode if it is
set to -1; all other values maintain the regular oper-
ation of the system. In Test mode, input from the A/D
converter and output to the D/A converter and the
relays board are inhibited. This permits to safely

- 131 -

i
-,
o

U - . ™ ~ - - -m - LI AN S LI I LI R L
e s N e N L A A 0 R e, L RS T g N e TR G VA,
“. «. *-’ B » . ’ " } B .. - A ...‘. .I. 0.. . Y . . "_ \...! * .‘ . S .. - W ' f > } Lk ad) fod » » “ » .

4.7 Variables

assign values to an array of Variables which are
otherwise set by the A/D converter's output, and to
run the system with these faked "measured data" for
testing purposes. (The names of the input array Vari-
ables are made up from the letter "M" plus a five
character mnemonic; compare Appendix 11.) Note: TEST
must not be set to -1 while the CGCS is actually con-
trolling the puller!

DIASTA This is an internal status parameter of the Diameter
Evaluation routines. It may be set to -2 at the end
of a growth run in order to disable the diameter eval-
uation and, in particular, the generation of error
messages which may be triggered by some of the actions
usually involved in the close-down procedure of the
puller. Diameter evaluation may be enabled again with
a RESET command.

ALPHA The parameter ALPHA determines the diameter evaluation
algorithms within two extreme approaches. ALPHA
should be a floating-point number between 0 and 1.
For further information, see chapters 4.1.3 and
5.3.2.2.3).

XTLSHP This parameter holds (in floating~point format) the
maximum permitted difference between the squares of
the diameter of the crystal (in millimeters) in two
adjacent sections of the crystal, approximately 1.2
millimeters apart from one another. The square of the
diameter stored for buoyancy compensation purposes is
adjusted, if necessary, to differ by not more than the
value of XTLSHP from the preceding value.

' %
X s

Display Control:

INTRVL This Variable determines the duration of the intervals
between subsequent output operations to the console.
One unit corresponds to an interval of 50 millisec-
onds. The default value of 10 corresponds to a com-
plete screen update every four to six seconds, depend-
ing on the other activities within the CGCS. More
frequent updates may be required during testing and
alignment; they can be achieved with smaller INTRVL
values. The fastest screen update is done with INTRVL
set to 1; a zero INTRVL value disables the screen out-
put entirely. Note: The screen display will
"freeze" irreversibly if INTRVL is set to zero; regu-
lar operation will not be resumed even if INTRVL is
set back to a non-zero value. The system has to be

- ¥ . s(l‘.‘ l" ls,.

- 132 -

A AN S Vo ?\E&

Lol 4.7 Variables

. restarted in order to re-activate data output on the
‘ t‘ screen. (The CGCS remains operable, though, with the

screen output disabled.) INTRVL does not affect the
output of the time, of operator commands, and of
S system messages.

] » Data Dump Control:
“.

S DUMPIN The Variable DUMPIN holds the interval between period-
o ical Data Dumps to the Print file; the time units are
minutes. DUMPIN may be set to any convenient value at
any time; a DUMPIN value of zero disables the period-
ical Data Dumps.

v DUMPFL This Variable triggers an additional Data Dump (and an
) additional record written to the Data file) if it is
.. set to -1. Note that a SET DUMPFL -1 0 command is the
- only save way to trigger additional Data Dumps from a
re Macro Command file. (DUMPFL is reset by the Data Dump

routine; it must therefore be set to -1 repeatedly if
- more than one Data Dumps are required.)

_,,..
- "lll!)}

2 PN
I's

- Scratchpad Variables:

" DUMMY In order to facilitate advanced Macro programming,

eight dummy INTEGER*2 locations were provided. These
e locations are not accessed by the CGCS code proper,
- but they may be arbitrarily ramped or used as flags
A (set to specific values) and employed in Conditional
' Macro commands. The dummy locations are referred to
! as DUMMY (1) through DUMMY(8).

—- e s

.
o

’ Miscellaneous - Read-0Only Variables:

L
P
L

<

TIME The Variable TIME holds the current system time (in

seconds) in an unsigned two-byte INTEGER location.

This counter wraps around to zero after 65,536 sec-
X onds. Note that the contents of TIME are interpreted
‘ as a signed INTEGER*2 number by the display and also
by the Conditional Macro Command execution routines;
time counts greater than 32,767 seconds are thus in-
terpreted as negative numbers.

B0

oy

i~ RAMPNG This Variable holds the number of parameters which are
currently being ramped. You may look at it (and have
your Macro commands look at it), but messing around

- 133 -

I\.“

L £ Y
A o

TS T T T T AT YT R T W T R T E TV T T T LR LEFUETT R ETT IV T TN T T e e Yl ik B Sanih, Sl Salb t . AR A - e Bl el bl Aad Tk Jna fir B - Badh el

4.7 Variables

with RAMPNG will inevitably confuse the CGCS. The
results may be spectacular but probably not desirable.

CNDCNT The same considerations as to RAMPNG apply to the

count of pending Conditional Macro commands kept in
this Variable.

ZERO This location holds, simply enough, a zero INTEGER*2
value. You may try to modify it but you won't be very
successful since this location is in ROM and thus
inaccessible to any writing attempt.

A

:

- 134 -

» adn

Y |

" I‘
8

»

SN

(52

P

VNS

5.1 CGCS Concept and Structure

S. The Czochralski Growth Control System Software
5.1 CGCS Concept and gstructure

5.1.1 Program Structure

From the programmer's point of view, the Czochralski Growth
Control System (CGCS) is an iRMX-80 based real-time applica-
tion system consisting of a number of iRMX-80 "tasks". A task
is a section of program code, usually dedicated to one control
commission or part of it. It is more or less independent from
other tasks and is executed whenever its specific action is
required and system resources are available, according to the
priority level which has been assigned to it. The execution
of a task is scheduled by the operating system's "Nucleus",
either in response to extraneous events (interrupts), or when
a task receives data which it was waiting for in the form of a
"message" from a fellow task.

From the user's point of view, however, the CGCS consists es-
sentially of three functional groups each of which, in turn,
consists of several tasks:

(1) The System Interface: This part of the software is trans-
parent to the user. It provides, nevertheless, essential
functions like data formatting, input and output, or time-
keeping.

(2) The Operator Interface: These tasks form the link between
the operator and the controller routines proper. Holding
the system's "intelligence", they constitute the by far
largest part of the CGCS code. The Operator Interface is
responsible for the following actions:

(a) Prompting for and interpretation of operator commands
which control the functions of the CGCS.

(b) Execution of operator and Macro command file sourced
commands. This function was kept strictly separate
from the operator command interpretation in order to
facilitate the handling of Macro commands.

(c) Recording of all commands pertaining to the actual
crystal growth process.

(d) Periodic output of measured data on the console CRT
terminal, and to a disk file, and preparation of data
to be output on an analog chart recorder.

- 135 -

"LV"T“‘

"l‘/ :

-,

RSN AR

h 5.1 CGCS Concept and Structure

- (3) The Process Controller proper: These are the routines
actually involved in controlling the heater power(s) and
motor speeds according to the pertinent setpoints provided
o by the Operator Interface. They also constitute the
- interface to the analog and digital I/0O hardware.

- We will follow the above scheme for the subsequent discussion
of the CGCS software. Chapter 5.2 is devoted to the large
B number of system and system interface routines which, due to
their rather generic design, can be regarded as "black boxes"
within the controller code proper. The actual controller code
is discussed in chapter 5.3, in two sub-sections corresponding
to the operator interface, and the process controller, respec-
tively.

A AN A

13

5.1.2 General Program Information

-

@A

The CGCS consists of routines part of which were written in
FORTRAN, part in assembly language. In general, the operator
interface and part of the actual controller routines are FOR-
- TRAN-based, whereas the system interface modules (and all
. system routines which were not supplied by Intel) are coded in
assembly language. Assembly language was chosen when one or
more of the following requirements had to be met:

e gonty, oy
. "
.l .

Pt a4

* Interface to iRMX-80 system routines which cannot be
called directly from FORTRAN due to different parameter

o passing conventions.

N
5 * High operation speed, which is particularly important if a
i routine is invoked very frequently.

x

_b * Numeric operations which can be coded more efficiently in
'5 assembly language than in FORTRAN (e.g., the low-pass
. filtering algorithm).
)

J(.

g FORTRAN, on the other hand, was chosen where the use of a
K high-level language was considered advantageous with regard to
" program clarity and programming efficiency. It was the ob-
Ko vious choice for routines which involve floating-point arith-
t metics. In order to improve the execution speed and code
W efficiency of FORTRAN, a set of library routines was imple-
® mented which replace the standard (lengthy and slow) FORTRAN
:; floating-point algorithms by routines which make use of the
,3 8231 Numeric Processor. These routines are not only several
- kilobytes smaller than the standard ones, they also boost the
oA execution speed by about one order of magnitude.

5,"

L

o - 136 -

!
Wy
N

o,

w

[

[d

L4

U4 P e ™ g - P) } { " ™ y------(-.-',-\' f.'(I(‘q‘(‘l"l'lg"g"l"'-l-'ﬁlr"‘
S S I o D 2 D SR Sy Sy s B N e X e Y i R e

P el Tl Sah Ban Saf i 2on @ 2.0 2.8 2.0 & 4 & A 4 A4 2 0 & & 84 St d:p pep Bty feg Buy i Bia She Ale - Ahe ST lleble . Al el e i e e ol A
E o

Ky 5.1 CGCS Concept and Structure

A special approach was necessary to fit the CGCS into the
“ available memory of less than 54 KBytes. (More than 10 of the
' total 64 KBytes are required for the ROM resident system and
its data areas in RAM.) The entire code of the Czochralski
o~ system would have exceeded this limit by far. It was, there-
o fore, necessary to choose an overlay approach (Fig. 15): Pro-

gram code which is not required permanently within the system
E is loaded into a reserved memory area only when needed, over-
” writing an other currently dispensable overlay. The only

function where this is possible without unduly impeding the
', system operation is the Command Interpreter which controls the
* dialogue between the operator and the system. Since the oper-
ator can only enter one command at a time, and since human
command entry is a very slow procedure anyway, compared to the

e standards of a microcomputer, it was possible to split the
g Command Interpreter's functions into a total of 22 different

overlays each of which is in charge of one particular command
or a group of related commands. According to the size of the
o largest overlay, a memory area of 2 KBytes was reserved for
the Command Interpreter overlays; the total combined size of
all overlays is approximately 30 KBytes.

Z
: COMMAND ’
. INTERPRETER |
A .
e
1 L J
= | ot
- N |
., FUNCTION #21:
e CLEAR CONDITIONAL
pRc] COMMAND J
3
,fi Fig. 15: Command Interpreter overlays.

- 137 -

L

{1::5“7-7" wr.vwwwv‘wihntnmmmmwwwwmmmmvﬁmmw
‘o
o

.4

G

-

ey 5.1 CGCS Concept and Structure
0
(FFFFH
o — MEMORY POOL,

N BUFFERS
':_"‘_~ EQOOH

NS

A

‘j COOOH

CZOCHRALSKI GROWTH

!‘ «—~— CONTROL SYSTEM
j,.‘:j: AOOOH PROGRAM AREA
b0l
b 8000H
e EALIRE

N 6000H

o -
F- _ CGCS DATA AREA
- 4000H s

® _ DATA AREA FOR ROM

s .~~~ RESIDENT SYSTEM

oy 2000H

v iRMX - 80 MONITOR

o SYSTEM ROM| CONF. TEST

o) 0000H

{.‘-
f
""-;"‘ Fig. 16: Memory map of the CGCS.
g7
...
j::-:_ The layout of the Czochralski Growth Control System memory map

(Fig. 16 and Appendix 7) was chosen to facilitate software up-

.) dating. The Variable concept for an easy modification of in-
__, ternal system parameters (compare chapters 1.3 and 4.7) re-
e quires a translation table which correlates the symbolic name
N of a system "Variable" to its physical storage location in
b~ memory. Since this translation table has to be generated
{ manually, it is obviously not desirable if it has to be re-
e written totally after each minor modification of the con-
e troller software. The system grows or shrinks at its high-
-;1"‘: address end; therefore, all important system Variables were
.:' located at the lowest addresses available, immediately above
‘N the code and data areas of the ROM resident system, in order
ety to prevent them from being affected by system size changes.
Q.- Most of these data must be available to several system tasks;
bt extensive use was therefore made of named FORTRAN "COMMON"
‘o blocks which are arranged (in alphabetical order) at the
N lowest addresses and consume approximately 1,280 bytes.
_;.:-Z (Since FORTRAN COMMON blocks require a special treatment at
o program linkage time in the Intel 8080/85 environment, it is
L) - -
.:::.. 138
'0'..
.":.
i
'o'H
O'I

P o - O Lt O S AT S e Y '.'-é‘\-\n""‘

. .y P A N e S T T R e R L N
. " NN AT e P AL
LR e O!q'l_a Dt W N _.’l,..) o8 i PR :.'.o ot P MM LGN !':'!'- A !'- A !' A l‘,‘; AN N, 5,Y, q AT !'A LA N

.
]
.

-'.:’:‘l..; I.

s s

)

s

-

¥

e

AW

TSN Y
v
ST

-
i)

. l{l

X%

x
ma

Lt o
Y

[] ';5 .S ..' R .‘ _u") o}

vmil wad Sed Sud Sl b Sl Gl Ao Ses f AnS Nai el ank Wi A Gl ek Aud ool Al s Sl sal ek ead tal sl el Y Atk ik “alke i Sl) et Alada - Ala M S lAe SAn e i ol Mo SRS TR m VN

-

[SEAS)

i

COCICN

[M N N X

;I" - .,q(r,, ‘_4- R .ﬁ~.p W e (_.r‘\?_.o._-.-r v.:_..’ ,,J\.’s"-'. ',. , PN
AnXi . 3 »

5.1 CGCS Concept and Structure

again advantageous to have them all located at addresses which
are least liable to change.) The COMMON blocks are immediate-
ly followed by the general system data area. The lowest
addresses within this area are used by the data locations of
assembly language modules some of which have to be manually
"tied" to "COMMON" blocks; these locations are still not very
likely to be affected by program modifications. They are
followed by the data areas of the permanently resident FORTRAN
based software which are essentially scratchpad locations for
the internal use of these routines. The remainder of the data
area whose total size is approximately 9,900 bytes holds
system data which hardly need be explicitly accessed and whose
actual absoclute addresses do, therefore, not matter.

A 2 KByte range immediately above the data area is reserved
for the Command Interpreter overlays' code and local data. It
is succeeded by the bulk of the system code. This code area
has currently a size of about 39.5 KBytes; the area between
its top and scme disk buffers and system variables which re-
side next to the high-address end of RAM is used as a memory
pool from which memory can be dynamically assigned to system
tasks when required. The size of this memory pool does not
matter unless it becomes too small; the program code may
therefore grow without penalty due to software improvements.
(The memory reserves are currently in the order of 1.5 KBytes,
which does permit program improvements but certainly not the
introduction of major new features.)

- 139 -

Xall 19,0.7,0°%, O y

).'. ; S
P sdhsolhn sl ntet, A

|

|

|
.

-.t.f' -

h\::

i
®

S
AN
3 o :

o 5.2 System Interface and Auxiliary Routines

s 5.2 System Interface and Auxiliary Routines
D The routines listed in this section are of a rather generic

'ﬁ? nature. Although they have been initially developed for a

NN process controller similar to the CGCS (and considerably

o improved since), their supporting nature distinguishes them

N from the genuine process controller software which will be
v discussed in chapter 5.3. In general, these routines can be
o regarded as "black boxes" as far as the CGCS is concerned:;
T some details about their operation and their interface to the
- software from which they are called are presented here, how-
" ever, in order to permit a more thorough understanding of the
.- CGCS software proper.

g The system interface and auxiliary routines are, in general,
N kept in various libraries from where they are linked with the
o= actual CGCS software when required. The following libraries
:: are used within the CGCS:

‘Y
-

'i? FRXMOD.LIB contains all Fortran-iRMX-80 interface, access,
. and data transfer control routines. These modules
' can only be executed in an iRMX=-80 environment.

FIORMX.LIB 1is the I/O0 formatting library for execution under

3 iRMX~-80.

! FORTIO.LIB interfaces the I/O conversion routines to a FOR~-

'5? TRAN environment.

--’_'..'

ﬁg FXDISK.LIB pernits to perform directory-controlled disk or
o device I/0 under RMX-80.

;) FXUTIL.LIB comprises a set of auxiliary utility routines

) which may or may not require interface routines
N contained in the above libraries.

;:? Similar routines for an ISIS-II or RXISIS-II environment are

e used by auxiliary programs supporting the CGCS:

[)

'fz FIOISS.LIB holds the (slightly simplified) ISIS-II versions

N of the routines in FIORMX.LIB.

L;Z FIORXI.LIB offers all features of the FIORMX.LIB but can be

=¥ executed with less overhead under RXISIS-II.
4

. FXDSKI.LIB 1is equivalent to FXDISK.LIB for an ISIS-II or

A RXISIS-II environment.

3
o - 140 -

;ﬁ
2

N
o
o
o
-

-‘ ::'\- - »

. O - A S . - “ar TR
PPl o S W A N N B N AN L O DL) e ANy \
N ~ > " » \ ‘ WA " AR pR [‘\' N .-‘ .’ \ UF " e RN v~ L) » ‘ Bl .e".!‘b.! 1! .!’i“..t B .“.u Bt ~ D &

e,

o
SR

%

r_
N

vy
.

il

>

A
k‘l'(
'z

N

- -
.

Ve

o

- N
ICEAREE ~

A

&S]

7

e
oy X

ARSI PR~

TLNY

>

a'r
’ ’} 1

N

W V‘,*-(‘ Gl

5.2 System Interface and Auxiliary Routines

5.2.1 iRMX-80 Control Routines - Library FRXMOD.LIB

NAME TYPE FUNCTION CHAPTER

FXSEND subr non-reentrant msg. sending rout. 5.2.1.1
FXWAIT subr non-reentr. msg. receiving rout.
FXACPT subr non-reentr. msg. receiving rout.

FRSEND subr reentrant message sending rout. 5.2.1.2
FRWAIT subr reentr. message receiving rout.
FRACPT subr reentr. message receiving rout.
FRINIT subr initialization routine

FRCRSP func check for response message

FRCXCH subr exchange creation routine 5.2.1.3
FRDLVL subr interrupt level disabling rout.

FRDTSK subr task deletion routine

FRDXCH subr exchange deletion routine

FRELVL subr interrupt level enabling routine
FRRESM subr task execution resuming routine

FRSUSP subr task execution suspending rout.

FRACTV func task descriptor of running task

FXCFLG task flag interrupt creation task 5.2.1.4
FXCRFE subr create flag interrupt exchange
FXDLFE subr disable flag interrupt exchange

FRACCS subr access common resources 5.2.1.5
FRRELS subr release common resources
FRINAR subr create an access control exch.

FXSYSE subr system error reporting routine 5.2.1.6

FRIFSM I subr Free Space Manager initializ. 5.2.1.7

5.2.1.1 Non-Reentrant Message Sending/Receiving Routines

The three routines FXSEND, FXWAIT, and FXACPT permit the
transmission and reception of messages with arbitrary lengths.
They can be called as subroutines by a FORTRAN progranm.
Message data are physically located in memory supplied by the
iRMX-80 Free Space Manager. FXSEND builds a message within
these memory locations, copying the data indicated by the
"variable" and "length" parameters to the message. Therefore,
the sending task may change the data which was submitted to
FXSEND immediately after the call for FXSEND. The data which

- 141 -

T AT IR T e T - TR S % U R U Y A AN AN N e N T N N R N
SRS Nan R Sge g S Lol g R A A A NN S T
A . X a M N B O e N y Lo 0l B 0t A L. . Al BELL A4 B e AN AR AN S did

X AN, a0 0] N0 AT

byt

f

5.

2 System Interface and Auxiliary Routines
is to be included into the message must, however, be located
in contiguous memory locations (compare chapter 3.1.5.3).
FXSEND transfers the number of bytes specified by the "length"
parameter, starting with the location indicated by "variable".
"Variable" is therefore the name of the first variable (in-
dependent of its type) within the data block. It remains in
the responsibility of the programmer to specify a correct byte
count with "length" as there is no possibility whatsoever for
FXSEND to check for the actual data block length. A zero data
string length is permissible; still, a (dummy) -"variable" name
must be specified even in this case. Note: The maximum
permitted "length" value for FXSEND is 243; larger values
cause a "SYSTEM ERROR" message at execution time, and the
"send" command is ignored.

The message dispatched by FXSEND may be received by any mes-
sage receiving routine described in this or in the next chap-
ter. The routines FRWAIT and FRACPT will return it to the
response exchange which was specified with the FXSEND call,
after having copied the data sent with the message to memory
locations of the receiving task. A correct response exchange
must therefore be specified with the FXSEND call if a task
might use FRWAIT or FRACPT in order to receive the message at
the specified exchange. The routines FXWAIT and FXACPT, on
the other hand, return the memory used for building the mes-
sage to the free space manager, and no response message is
generated. In this case, the "response exchange'" parameter in
the FXSEND call may be any dummy variable name; it must, how-
ever, not be omitted. Anyhow, the "life" of the message sent
via FXSEND must be terminated either by the receiving task or
by any task which services the response exchange (if one was
specified) with FXWAIT or FXACPT.

The functions of FXWAIT and FXACPT correspond to those of the
iRMX~-80 system routines RQWAIT and RQACPT, respectively. A
task which performs an FXWAIT call waits at the exchange
specified with the call either until a message is available at
this exchange or until the time limit (if requested) is over.
If a task times out at an exchange, FXWAIT sets the "length"
parameter to zero and returns a "type" value of 3 (TIMEDS$OUT-
SMSG) if a "type" value of zero has been specified in the
FXWAIT call. Note: The parameter "time limit" must indicate
an INTEGER*2 variable! This demand is automatically fulfilled
if numeric (integer type!) constants are used in conjunction
with the default integer length of the FORTRAN compiler
FORTS8O.

FXACPT, on the other hand, checks whether a message is avail-
able at the specified exchange. If so, the message is removed

- 142 -

A

L T B S
o

ph i I IR i

R |

ety
Vool
€

R

5.2 System Interface and Auxiliary Routines

from the exchange and processed. If there is no message,
FXACPT returns a "length" value of zero.

An untimed or prolonged wait performed with FXWAIT does not
contradict the demands for non-reentrant interlock protected
routines: The first part of the FXWAIT and FXACPT code is
made reentrant, permitting an unlimited quasi-parallel use of
this code by an arbitrary number of routines. Only the last
part of these routines - the returning of the memory used for
the message to the Free Space Manager - had to be made non-
reentrant.

The further treatment of the message is the same for FXWAIT
and FXACPT: The routines first check the "type" value speci-
fied with their call. If FXWAIT or FXACPT were called with a
"type" parameter of zero, a message of any type is accepted:;
the message "type" value is copied to the FXWAIT or FXACPT
"type" parameter. For any non-zero "type" parameter, FXWAIT
and FXACPT check the message type value. If it is equal to
the specified value, the message is further processed, other-
wise, a "SYSTEM ERROR" message is issued, and FXWAIT or FXACPT
try to receive another message at the same exchange. A zero
"type" value must therefore be used if messages with different
"type" values may be received; a further check can be per-
formed by the receiving task. The type checking feature, on
the other hand, permits the detection of misguided or errone-
ous messages.

Having accepted the message as correct, the number of bytes
which has been specified with the "length" parameter when the
message was generated by the sending task is copied from the
data area of the message to a data area in the receiving
task's memory which is defined by the parameter "“variable®.
Therefore, the data pattern which existed in the data block of
the sending task when the message was built is copied to a
data block within the receiving task. This data block starts
with the location indicated by "variable", as explained for
FXSEND. The number of received data bytes is returned in the
"length" parameter. Note that FXWAIT and FXACPT return only
one "length" byte. The variable specified for "length" should
therefore either be declared as INTEGER*1l or explicitly set to
zero prior to the FXWAIT or FXACPT call. Otherwise, acciden-
tal data in the high byte(s) of an INTEGER*2 or *4 variable
would cause a totally meaningless value. Furthermore, the
programmer has to make sure that the allocation of the message
data within the receiving task corresponds to the allocation
within the sending task, i.e., the number, types, and order of
the variables within the data block of the receiving task must
be the same as in the sending task.

- 143 -

-
Y

b \.:.\

vy

o

2

X

- 5.2 System Interface and Auxiliary Routines
b Finally, FXWAIT and FXACPT check whether the message was actu-
{ ¢ ally generated in memory supplied by the Free Space Manager.
e If so, the message is returned to the memory pool of the Free
N Space Manager. No further action is taken if the message has
q}: not been created by FXSEND (and was therefore not built from
., Free Space Manager memory). This permits the receiving of any
s arbitrary message by FXWAIT or FXACPT.

-
1,

variable: Name of the first variable in a con-
tiguous data block which is to be transmitted.
7_ length: Number of bytes to be transmitted (or name

- ROUTINE FXSEND:
-:f:
'n:: Routine Type: Assembly language subroutine; not reentrant;
;n protected by a software interlock.
" Initialization: Execution of FXITSK.
NG
La"]
N Routine Call:
~
i}- CALL FXSEND (receiv.ex.,resp.ex,variable,length,type)
AP with: receiv.ex.: Name of the exchange to which the
o message is sent.
s resp.ex: Name of the response exchange to which
\T the message should be returned.
o

s of an INTEGER*1 or INTEGER*2 variable holding
A this value).
N type: Message type value (or name of an IN-
‘o TEGER*1 or INTEGER*2 variable holding this
1)' value) .
- n Required Stack: 10 bytes
N
vy ROUTINE FXWAIT:
3 o
. "
L Routine Type: Assembly language subroutine; not reentrant;
$§ protected by a software interlock.
) L] ‘
&% Initialization: Execution of FXITSK.
L)
vy
hﬁ' Routine Call:
Q.-
o CALL FXWAIT (exchange,time lim.,variable,length, type)
' .1- -
oy . .
A with: exchange: Name of the exchange where the task is
A to wait for a message.
R
%9
ol - 144 -
7
=
\ .I}‘D
NN
o
;ﬂf

'
{2

----- " LI

T D A b A A e et

-~
o

(W)

B>

.ft

“:. -

e

CNNC 5.2 System Interface and Auxiliary Routines
X

L time lim.: Time limit (INTEGER*2 constant or name
{ of an INTEGER*2 variable holding this value).
o variable: Name of the first variable in a contigu-
N ous data block which is to be updated by the

message.

length: Name of an INTEGER*1l variable where FXWAIT
stores the number of data bytes received.

type: Type value or name of an INTEGER*1l or
INTEGER*2 variable where FXWAIT stores the
"type" value of the received message if a zero
value has been specified.

1T s ats s s
f./.‘I'.

LA S _-'_‘- ~ A
S

>
AN

N

- <
N Required Stack: 18 bytes
AT
by ROUTINE FXACPT:
A
j& . Routine Type: Assembly language subroutine; not reentrant:
e protected by a software interlock.

X '(:
o
-7 Initialization: Execution of FXITSK.
N
SR Routine Call:
E: CALL FXACPT (exchange,variable,length, type)

L

Parameters: see FXWAIT

"

[N

xa; -~ Required Stack: 18 bytes

g

1S

W

2 % 5.2.1.2 Reentrant Message Sending/Receiving Routines

-~

;3: X In order to avoid the unpredictable execution delays which may

;ﬁ “ be imposed upon a task using FXSEND, FXWAIT, or FXACPT, a

NN second set of message transmitting and receiving routines was
i provided. While a task using one of the above routines might
..wrﬁ have to wait at the interlock exchange until the routine
) ﬁ‘ becomes available and would probably incur some further delay
o during the memory allocation performed by the Free Space

},'J Manager, there is no (inherent) delay if the reentrant rou-

;{';E tines FRSEND, FRWAIT, and FRACPT are used. The characteris-
T o tics of these routines, however, differ slightly from those of
:ﬁ the non-reentrant ones.

l‘

i T The major difference is caused by the fact that FRSEND does

j’:) not copy the data which is to be dispatched. In contrast,
> - FRSEND uses a fixed message which is closely connected to a

‘b,ﬁ' dedicated response exchange. No message must be explicitly
5 - 145 -

o

P& hY

SO

o

. 77

N T A g o S G Gl N oA 0 e,

Wl
v

Jons
ISASMIINIT RAAEarh
PSR WA T

e, I i
B b L)
:l"A":l‘:l."Al

X Shi

ARG
" ’;?1-_'}?}?,‘_ é

b
-

-
S P iyl
RAE L‘f"?:‘/x :.;.,r,'

e
R

” ;vl »

.-.":‘
-2

4

P
P A

o,
AN

"

N

.

2 i

NSRS

J

¥
PRy

1

L
"~ '_4‘,(:. »

,
ANAN

AN

L ¢
P
-

... R
t:ﬁ 4 ?I,

g

¥

i

s
-
.

YT SR

5.2 System Interface and Auxiliary Routines

sent to this exchange. The response exchange and the message \
header form a 19 byte block in the data area of the transmitt- 1
ing task. This block must immediately precede the block of
data which is to be sent with the message. (This can be
guaranteed as shown in chapter 3.1.5.3 1if the first variable
to be transmitted is preceded by a 19-element INTEGER*1 array
whose name is the name of the response exchange.) Note that
the name of the response exchange need not be made public to
other tasks as the message itself contains the corresponding
information. Prior to the first call for FRSEND, the trans-
mitting task must call the routine FRINIT which creates the
response exchange and initializes the message header. Note:
FRINIT must be called once and only once by each task which is
going to use FRSEND. The meaning of the parameters in the
FRINIT call is similar to the FXSEND parameter set. The data
block length is limited to 246 for the FRSEND routine; a
larger value will cause a "SYSTEM ERROR" message, and the task
which has issued the FRINIT call is effectively suspended
(waiting forever at its own response exchange). As all infor-
mation about the message length and type has already been
defined in the FRINIT call, the set of parameters required for
the FRSEND call differs significantly from the one required
with FXSEND.

A very important advantage of the fixed message locations used
with FRSEND is that the actual working data area of a task may
be transmitted to another task without the need of copying it
within the sending task. Still, this imposes a problem as any
changes of the data within the message are legal only after
the message was received, copied, and returned by the receiv-
ing task. Variables within the message data block should
therefore be changed only when the message is waiting at its
response exchange. Before writing data into the message data
block, the user task should check the LOGICAL*1 function
FRCRSP which returns a .FALSE. value if the (correct) message
is waiting at the response exchange, and otherwise a .TRUE.
value. If FRCRSP returns a .TRUE. it is suggested to skip the
message preparation and dispatch entirely as the receiving
task would not be ready to accept new data anyhow. This
applies, of course, particularly if the transmitting task runs
periodically in order to update its output data. Oonly one
FRCRSP check is required before each message dispatch; once
the message has been returned to its response exchange, it can
only be removed from there by an FRSEND call. FRSEND, in
turn, checks independently from FRCRSP whether the message is
actually available for sending, and removes it from the res-
ponse exchange. If no message (or not the correct message)
was waiting at the response exchange, FRSEND returns to the
calling task without further notice and without having sent a
message. This implies, however, another important conse-

- 146 -

C T A ™ a M a Cn W T o
'\‘,‘.f\"‘u \J‘.'."f\"-'
¢l 3

A L
> N\

<

“

AT, RS
¥ .

v

(‘l
by
s
.

o, A

)

i uag an ,‘v‘",“",h‘w‘ﬁtwm“m

5.2 ©System Interface and Auxiliary Routines

quence: a task cannot perform several succeeding FRSEND calls
with the same message if its priority is higher than the
priorities of the receiving tasks. In this case, the sending
task continues running and does not permit the first receiving
task to remove the message from its input exchange. All other
tasks would therefore forever be locked out from data trans-
fer.

While the exchanges to which the non-reentrant routine FXSEND
sends its messages may be served by FXWAIT and FXACPT as well
as by FRWAIT and FRACPT, this does not apply analogously to
the FRSEND messages. They must be received either by FRWAIT
or by FRACPT. Only these routines return a message to its
response exchange. Note that any message, no matter what its
origin was, is sent to the location indicated by its response
exchange field if its length exceeds eight bytes. (This
message length is npot identical with the parameter "length".
The actual message length results from the value of "length"
plus nine (for the message header).)

Aside from the final treatment of the message, the charac-
teristics of FRWAIT and FRACPT are identical to those of
FXWAIT and FXACPT. FXWAIT and FXACPT return the message to
the Free Space Manager after having processed it; their reent-
rant counterparts send it back to the response exchange. The
information given about FXWAIT and FXACPT in chapter 5.2.1.1
applies therefore analogously to FRWAIT and FRACPT, respec-
tively.

ROUTINE FRSEND:
Routine Type: Assembly language subroutine; reentrant.
Initialization: Call for FRINIT.
Routine Call:
CALL FRSEND (receiv.ex., resp.ex.)

with: receiv.ex.: Name of the exchange to which

the message is sent.

resp.ex: Name of the response exchange to which

the message should be returned.

Required Stack: 10 bytes

ROUTINE FRWAIT:

- 147 -

w- o o [] . _ . " “u
RO ER L SA EE L CN NI O

AT "'I',,:-I‘

e
)

e AL T T
AT

[

R)

f Y

PO

. <

NS

iﬂ 5.2 System Interface and Auxiliary Routines
- Routine Type: Assembly language subroutine; reentrant.
(. Initialization: none.

N

NN Routine Call:

-.:‘h.‘

3& CALL FRWAIT (exchange,time lim.,variable,length, type)
fi} with: exchange: Name of the exchange where the task is

N to wait for a message.

s time lim.: Time limit (INTEGER*2 constant or name
AN of an INTEGER#*2 variable holding this value).
~ls variable: Name of the first variable in a contigu-
o ous data block which is to be updated by the
message.
o length: Name of an INTEGER*1 variable where FRWAIT
‘;j: stores the number of data bytes received.
Vs type: Type value or name of an INTEGER*1l or
o INTEGER*2 variable where FRWAIT stores the
~ . .
Eo "type" value of the received message if a zero
o value has been specified.
o
e Required Stack: 18 bytes
~ s
oS
EaS
i'f. ROUTINE FRACPT:
;' Routine Type: Assembly language subroutine; reentrant.
o
i Initialization: none.
’ -
t;’ Routine call:
o CALL FRACPT (exchange,variable,length, type)
s
;ﬁ Parameters: see FRWAIT
oal
IR 3
LT Required Stack: 18 bytes
.t
* 3
)
ol KOUTINE FRINIT:
gl
: j: Routine Type: Assembly language subroutine; reentrant.
O
.- Initialization: none.
AN
‘::? Routine Call:
W
. CALL FRINIT (resp.ex,length,type)
~:'\
o
. ;, - 148 -
oy
s
|.~ LS
o
4
b

-
.
P

\‘:...%.:’!':'a'p‘l.‘- !

adan '—’- Fas

5

._."'M--

Y a B

%

- - L
AP rrerd FrE N

-
-

¥
i

555

x

'-
[3

~ Y
u 5

6“3
L J

Y

a2 F

i 4

v

Y

A

o

)

O AT AT, » B> O DN NN RN ONOOIADNIN
K y Wy 1% t_-.l':‘.l'n "o.l‘.":.'.o . '!ﬁ o lf"tf"-:"'."'t"':"l»'?-""."0.'".‘!l:‘!'-".'ﬁ,it‘!';",h",'."l

5.2 System Interface and Auxiliary Routines

with: resp.ex.: Name of the 19 byte response exchange -

message header block immediately preceding the
data block.

length: Number of bytes to be transmitted (or name
of an INTEGER*1 or INTEGER#*2 variable holding
this value).

type: Message type value (or name of an IN-
TEGER*1 or INTEGER*2 variable holding this
value).

Required Stack: 12 bytes

ROUTINE FRCRSP:

Routine Type: Assembly language subroutine: reentrant;
must be declared as LOGICAL*1l in the calling
FORTRAN program.

Initialization: none
Routine Call:
boolean = FRCRSP (resp.ex.)

with: boolean: LOGICAL*l variable (or immediate use of
FRCRSP as parameter, e.g., in a logical IF
statement)
resp.ex: Name of the response exchange which is
tested for the waiting message.

The routine returns .TRUE. if the correct response message
is not waiting at the specified exchange, and .FALSE., if
it is waiting.

Required Stack: 0 bytes

5.2.1.3 Interface Routines for iRMX-80 Nucleus Functions

The remaining iRMX-80 Nucleus routines - as far as they are
applicable to a FORTRAN based system running on hardware such
as an iSBC 80/24 board - are interfaced by the routines de-
scribed within this chapter. (No interface routine was pro-
vided for the iRMX-80 task creation routine RQCTSK.) Since
these interface routines simply adapt the parameters supplied
by FORTRAN to the requirements of iRMX-80, they maintain com-
pletely the characteristics of the corresponding iRMX-80 sys-

- 149 -

e
o
.
o
N 5.2 System Interface and Auxiliary Routines
g
™
'Df tem routines (whose names result from the routine names if the
 { first two characters "FR..." are replaced by "RQ..."). All
e routines specified within this chapter are reentrant.
CAL
jﬁ Two routines are provided for the creation and deletion of
e exchanges, FRCXCH and FRDXCH, respectively. The exchange ad-
Cavl]

. dress parameter of both routines must specify a ten byte loca-
\ tion in memory. FRCXCH builds and initializes an exchange in
g » any case. In contrast, FRDXCH checks first whether a task or

*
\fﬁ a message is waiting at the specified exchange. If so, no
\\5 further action takes place, and FRDXCH returns a .FALSE. value
'\j to the variable specified as its second parameter. If neither
e a task nor a message is waiting at the exchange, the exchange

is deleted, and FRDXCH returns a .TRUE. value.

'.-
~:j' Three routines permit the control of the status of a task: It
e can be deleted (with FRDTSK), suspended (with FRSUSP), or its
{: execution can be resumed if it was suspended (with FRRESM).
e These three routines require the name of an INTEGER*2 variable
° as a parameter which holds the address of the task's task de-
b7 scriptor. There are two possibilities for supplying task de-
o scriptor addresses to a FORTRAN program: They may either be
;ﬁﬁ. stored in a (named) COMMON block by a small assembly language
s)
s or PL/M routine which may be called as part of the initializa-
NN tion sequence, or each task determines its own task descriptor
address by calling the (INTEGER*2) function FRACTV, and stores
(. .
g the task descriptor address returned by FRACTV in memory.
- .
.
:{C Two routines, FRELVL and FRDLVL, finally, permit the enabling
{jﬁ and disabling of interrupt levels, respectively. The appro-
N priate interrupt level must be specified as a parameter with
?) their call.
o
.¢.-“
o ROUTINE FRCXCH:
r;.r
'gﬁ Routine Type: Assembly language subroutine; reentrant.
.v Initialization: none
W\ »
WO
o
:ﬁb Routine Call:
. o)
,:Eb CALL FRCXCH (exchange)
‘t
Q.- with: exchange: Name of a 10 byte area in read-write
XB memory where iRMX-80 can build an exchange.
2
M
::j Required Stack: 2 bytes
v
o
Fd
- 150 -
o
.IQJ
o
o
~-
LON

f 4
Ay
.

.l

P PR e IR AR LI NS SN A S L L I P AT A AT R L T PO N IO T5 T S 0 I TP NS] L% j Y
RO LR O ._,_-'& R o o A a2 L S e) Oy
, NauX Mt Xl 2 i) S LMM@M .

o

@
-

Bk s

N IR

o=

H SN2
T ¥ R 2 B 2 I

R L

> »

.
| S

- -
B FE

e -
LMY

'-" 'Igl.'(.

ooy

- pem
=

S

,c-‘

-.’"l. A .'r.-ﬁ‘c.’,., Py

KX 'O.lq'ﬂu.nl

5.2 System Interface and Auxiliary Routines

ROUTINE FRDLVL:

Routine Type: Assembly language subroutine; reentrant.
Initialization: none
Routine Call:
CALL FRDLVL (level)
with: level: Interrupt level (see iRMX-80 documenta-
tion) constant or INTEGER*1 or INTEGER*2

variable name holding this value.

Required Stack: 2 bytes

ROUTINE FRDTSK:

Routine Type: Assembly language subroutine; reentrant.

Initialization: none

Routine Call:

CALL FRDTSK (task descriptor)

with: task descriptor: Name of an INTEGER*2 variable
holding the address of the task descriptor of
the task to be deleted, or FRACTV function
call.

Required Stack: 4 bytes

ROUTINE FRDXCH:

R

Routine Type: Assembly language subroutine; reentrant.
Initialization: none
Routine Call:
CALL FRDXCH (exchange,boolean)
with: exchange: Name of the exchange to be deleted.
boolean: Name of a LOGICAL*1l variable whose value

is returned by FRDXCH depending on whether the

- 151 -

e - - g . RV - oo 38 A" « L]
.’d‘f.g'b.q .d" L= Ik ‘J Y "‘ 4 R " LYW, o' :"'l'!'l'- |':‘:.:‘"!‘t‘.~' WG, K4

AW RS

-l
o

L
CCUNN%

‘ 'p..:-
P 54

’. ‘!.‘) L

AR
NNy
.\'. Ak ;

<2,

ge:
Ity

-»
-“-‘

.

&
..

4
.I.
‘:::. J

) 1 by) B O R O Ot
Wt t.‘*."'!‘\.h‘ ‘.":..'!::"I ARG

5.2 System Interface and Auxiliary Routines

exchange could be deleted (.TRUE.) or not
(.FALSE.).

Required Stack: 6 bytes

ROUTINE FRELVL:
Routine Type: Assembly language subroutine; reentrant.
Initialization: none
Routine call:
CALL FRELVL (level)
with: level: Interrupt level (see iRMX-80 documenta-
tion) constant or INTEGER*1 or INTEGER*2

variable name holding this value.

Required Stack: 2 bytes

ROUTINE FRRESM:
Routine Type: Assembly language subroutine; reentrant.
Initialization: none
Routine call:
CALL FRRESM (task descriptor)
with: task descriptor: Name of an INTEGER*2 variable
holding the address of the task descriptor of

the task to be resumed.

Required Stack: 4 bytes

ROUTINE FRSUSP:
Routine Type: Assembly language subroutine; reentrant.
Initialization: none
Routine Call:

CALL FRSUSP (task descriptor)

- 152 -

‘ P " . .
AR T BRI Mttt e e

L £ 20 Aon Rin S0 Bt Ste A —Si

v*"'v*'m‘

. 5.2 System Interface and Auxiliary Routines

: with: task descriptor: Name of an INTEGER*2 variable
@ holding the address of the task descriptor of
the task to be suspended, or FRACTV function
call.
-
| Required Stack: 4 bytes

8 ROUTINE FRACTV:

Routine Type: Assembly language subroutine; reentrant;
must be declared as INTEGER*2 in the calling
FORTRAN program

S

Initialization: none

vy

Routine Call:

variable = FRACTV (dummy)

T

; with: variable: Name of the variable where the task
e descriptor address of the running task can be
S stored.

dummy: Name of a dummy variable which may be of
- any arbitrary type except CHARACTER.

f ﬁ The routine returns the start address of the task descrip-

~ tor of the running task as an INTEGER*2 variable.

.

::5 Required Stack: 0 bytes

L)

i - 5.2.1.4 "Flag Interrupt" Service Routines

3

Y j: A special feature called "flag interrupts" allows a task to
o

indicate to another task the occurrence of an event (e.g., of
a clock tick) without the overhead inherently involved in
sending a message. Instead of dispatching a message, the
"transmitting" task sets a one-byte "flag" location In memory
K to OFFH. Each flag location is linked to a message-exchange
i pair similar to iRMX-80 interrupt exchanges. A dedicated task
™ - runs periodically every iRMX-80 clock tick (50 ms), checking

v all flag locations of whose existence it has been notified,
4 sending the "flag interrupt" message to the corresponding
exchange if it finds a flag set, and resetting all flags to
N b(zero. The execution of any other task can thus be controlled
Ly by the flag status if the task is to wait at the flag inter-
rupt exchange. Although this approach inherently causes a
! delay between the setting of the flag and the processing of

S|

‘ - 153 -

‘.)")

) - AW N O N N O R
R b S A R e e oy Ty DR

=~ XN
"? J ' 'l,'i’. ".'t:'lﬁ:

S

R R

ol

Y—pE——
. a4
Sth A0

l.#
AR

3’0y

". i)

[
&

‘

‘..
22

VAN

BC AN

@,
o LTS

L
e
)
¢
’
’
[

SIS,

5.2 System Interface and Auxiliary Routines

the flag interrupt, it reduces the overhead for the transmitt-
ing task significantly (since modifying one byte in memory is
obviously faster than executing all the iRMX-80 Nucleus opera-
tions involved in sending a message), which may be important
for tasks with critical timing.

The software provided for the servicing of "flag interrupts"
consists of one task and two non-reentrant routines which may
be called by any task in order to create or delete a "flag
interrupt" exchange. The task, FXCFLG, runs once each systen
time unit (50 ms) and polls all flag bytes which have been
previously specified to it by calling the "flag interrupt"
exchange creation routine FXCRFE. If a flag byte is found
set, it is reset, and a message adjacent to the "flag inter-
rupt" exchange is sent to this exchange. If a message is
already waiting at this exchange, FXCFLG changes only the
"type" byte of the interrupt message from its normal value of
1 (INTSTYPE) to 2 (MISSEDSINTSTYPE) in order to indicate to
the task(s) which service(s) the exchange that at least one
"flag interrupt'" has been missed. Note that FXCFLG does not
check whether the message waiting at the exchange is actually
the pertinent interrupt message; no other messages should
therefore be sent to a "flag interrupt" exchange.

The priority of FXCFLG should be set rather high, in any case
higher than the priorities of the tasks which might use "flag
interrupts". It might be even necessary to assign a priority
to FXCFLG which is (numerically) smaller than 128, i.e., a
priority in the range used by the genuine interrupt service
routines.

A task may receive the information that a "flag interrupt" has
happened by simply waiting at the "flag interrupt" exchange in
an untimed wait. Either FXWAIT or FRWAIT may be used for this
purpose. Having received the interrupt message, the task may
check its "type" byte in order to make sure that no "flag
interrupt" was missed. (Exactly the same proceedings are re-
q-‘red for tasks acknowledging genuine interrupts.)

Having terminated the flag byte polling loop, FXCFLG checks
whether there was a request for creating or deleting a "flag
interrupt" exchange. If there was one, it is executed before
FXCFLG returns to its timed wait. The exchange FXCDFE to
which such requests are sent by FXCRFE and FXDLFE must be
initialized by the configuration module in order to guarantee
its existence when the first message is sent to it.

FXCFLG keeps its pointers to flag byte and exchange locations
in memory supplied by the Free Space Manager. Therefore/ flag
bytes and the corresponding exchanges may be dynamically

- 154 -

5.2 System Interface and Auxiliary Routines

introduced by th® other tasks in the system. For each "flag
‘ interrupt", FXCFLG requests eight bytes from the Free Space
Manager which hold the flag byte and the exchange addresses
and a pointer to the next eight-byte block which may or may
- not be contiguous to the preceding one. (FXCFLG uses only six
e of the eight bytes; eight bytes, however, are the smallest
amount of memory which can be allocated by the Free Space
9 Manager.) A newly created "flag interrupt" control block is
. added as the first block to be checked within a polling cycle:
Cot this reduces the program overhead considerably. In order to
delete a "flag interrupt" exchange upon a corresponding re-
IS quest, FXCFLG searches for the specified control block, chan-

N ges the pointer of the preceding block in order to thread it
to the block following the one to be deleted, and returns the
. memory block to the Free Space Manager.

Two non-reentrant subroutines, FXCRFE and FXDLFE, permit the
. creation and the deletion of "flag interrupt" control struc-
. tures. Both routines use the routine FXSEND in order to send
an appropriate message to FXCFLG. 1In order to create a "flag
a interrupt" exchange, the name of a 15 byte location in RAM
R must be specified where FXCFLG can build an interrupt ex-
SoA change. The "flag interrupt" exchange starts its operation
o immediately after the FXCRFE call. The deletion of "flag
interrupt" control structures is, in contrast, a somewhat more
' complicated procedure. First, the task which wants to delete
the interrupt exchange should call FXDLFE which disables the
control structures maintained by FXCFLG and prevents any
. future "flag interrupts". Due to the possible delay between
the deletion request and the actual deletion of the FXCFLG
control block, there might be still the possibility of a "flag
interrupt" after the FXDLFE request was executed. The task
4 performing the deletion should therefore incur a timed wait
- (with FRWAIT) at the "flag interrupt" exchange which should
last at least one time unit, better, several time units.
T Having made sure thus that no "flag interrupt" is to happen
. any more, the task may delete the interrupt exchange (with
bt FRDXCH) . Keep in mind that a message sent to a non- (or no
more) existing exchange may cause a disastrous system error!

s

TASK NAME: FXCFLG

ENTRY POINT: FXCFLG

STACK LENGTH: 36 bytes

PRIORITY: =~ 128 (higher than all tasks using its
services)

DEFAULT EXCH.: none

EXTRA: 0

INITIAL EXCH.: FXCDFE

- 155 -

N 5.2 System Interface and Auxiliary Routines

ROUTINE FXCRFE:

Routine Type: Assembly language subroutine; not reentrant;

o
'f} protected by a software interlock.
\!
o', -
’ﬁ} Initialization: Execution of FXITSK
v
\ Routine call:
o,
CALL FXCRFE (exchange,flag)
.15 with: exchange: Name of a 15 byte location in read-
e write memory where the "flag interrupt" ex-
. change can be created.
o flag: Name of a flag byte.
[.
‘o Required Stack: 24 bytes
b
N
'.' ROUTINE FXDLFE:
}??: Routine Type: Assembly language subroutine; not reentrant;
58 protected by a software interlock.
Eg' Initialization: Execution of FXITSK
{ _ Routine Call:
ok CALL FXDLFE (exchange)
'ﬁﬁ with: exchange: Name of the "flag interrupt"
;; exchange to be deleted.
Lﬁv Required Stack: 22 bytes
o
-
L. 5.2.1.5 Access Contro outine
45 Three routines permit to establish and maintain software in-
:g terlocks for common code or data. The routine FRINAR builds a
) 3 message-exchange combination in 15 bytes of contiguous memory,
%y and allows access to the protected sequence by sending the
y message to the exchange. FRACCS, in turn, performs a "wait"
9. operation at the specified exchange. If the release message
- is available at the exchange, it is removed, and the task
which has called FRACCS can continue its execution. Other-
vy Wise, the task has to wait until the task which is currently
~*§ using the protected resources has terminated its execution and
Y sent the release message back to the control exchange, calling
AT, - 156 -
) &I
N
)
",
v

e

DRI A

w Py ¥
= .\f Yy Ry 810V N

e % W NN AT - o e §OO a3 e e e % T
'tqk LU ,N"':':k .'0. '-"l-"‘e"t' .'5.‘ :! M N ». :"_'!.'!0. AL L -. (v L v. .0.., 8 \’l.:?' '.l;:‘.'\.. LY

o \'\ '\)\
S W 8% W,

AN

Pk Sy Ry ¢

v
DR S PN

A,

L

VWA

N]

o

IRRY

‘AN

- -
Vo

" ' ff f o - o L] L4 N .
, AT AN
W N T P AN N

5.2 System Interface and Auxiliary Routines

FRRELS. FRACCS checks whether the release message was the
correct one; if not, a "SYSTEM ERROR" message is generated,
and FRACCS continues waiting for the correct release message.

This implies several important rules for the use of these rou-
tines:

First, the programmer has to make sure that the control ex-
change is already created at the time the first task wants to
access it. This can only be done by calling FRINAR in an
initialization routine, once for each exchange-message com-
bination. The configuration module must not be used for this
purpose as it would only create the exchange without sending
the message to it, which would, of course, block all tasks
which would wait at the exchange. Defining the exchange in
the configuration module and executing FRINAR at a later stage
would be even worse: a fatal system error might happen if a
task was already waiting at the exchange when the FRINAR call
was lissued.

Second, the sequence which is enclosed by FRACCS and FRRELS
has to be kept as short as possible. Although the three rou-
tines described in this chapter are reentrant, their execution
might affect the regular scheduling of the iRMX-80 tasks (com-
pare chapter 3.1.3). The probability that this might matter
is the higher the longer a task remains within a protected
area and the more tasks want to access this protected area.
Separate access control exchanges should therefore be provided
for each independent unit (code or data) which may be used by
several tasks. FRACCS should be called immediately before
accessing the shared resources, and FRRELS, immediately after
having left then. The shared routines ought not to perform
actions which might lead to additional delays of their execu-
tion: an untimed wait, for example, would not only affect the
task currently executing within the common code but also all
other tasks which might want to access it. If the software
interlock is used to protect data in common blocks, each task
accessing these data should only copy them to or from local
memory locations under the protection of the access control
routines; any further operation should be done by code outside
the protected sequence.

Third, one but only one FRRELS call must follow an FRACCS
call. If a protected routine branches, each branch must be
terminated by FRRELS; the same applies analogously to routines
with several entry points. Omitting an FRRELS call after
having exited the protected code would not only lock out the
common code or data forever, it would also lock out all rou-
tines which would ever attempt to access it. A surplus FRRELS

- 157 -

A

.":n

"L 5.2 System Interface and Auxiliary Routines
:: call, in contrast, is ignored due to the special structure of

this routine.

;2 Note: No message must ever be sent to the control exchange
o except by FRRELS. The control exchange must not serve any
o other purpose but controlling the access to the following code
o segment.

\

1) .‘_:

. ROUTINE FRACCS:

QE Routine Type: Assembly language subroutine; reentrant.

Initialization: FRINAR call, specifying the same control

T exchange.

V

:: Routine Call:

=

2N CALL FRACCS (exchange)

L] .

Y with: exchange: Name of the control exchange where the
N calling task must wait for the protected

R sequence to become accessible.

;j: Required Stack: 6 bytes

o ROUTINE FRRELS:

;- Routine Type: Assembly language subroutine; reentrant.

. .~l

\ h\. 1 . . 3) .

“j Initialization: FRINAR call,specifying the same control
” exchange

:E Routine Call:

-

‘5: CALL FRRELS (exchange)

!- with: exchange: Name of the control exchange to which
. its corresponding message has to be sent by
o FRRELS .

.f: Required Stack: 2 bytes

»

®.

o ROUTINE FRINAR:

'O

Pl

$? Routine Type: Assembly language subroutine; reentrant.

2
‘

a‘ Initialization: none

ﬁ. - 158 -

Q.|

0'|

t.

o:.'

O

]

S

> - e - - A “ -
"e o, Wy W Wy g € T (W T -rrv-(.f_-r,\-rg - YR TN " oAt At - . ~p -~ AL
B e e e e ‘ IR O ST N \ e

Ire S

2
- 5.2 System Interface and Auxiliary Routines
' ! Routine Call:
: CALL FRINAR (exchange)
:-3 with: exchange: Name of the control exchange - message
A combination (15 bytes) which has to be ini-
) tialized by FRINAR.
. g Required Stack: 4 bytes
N
" 5.2.1.6 System Error Messages
R > Most of the system and interface routines perform some kind of
N error checking, particularly when messages are received. In
K general, the routines branch to an exception code, and call
N the routine FXSERR if an error is detected. This routine may
3 & be supplied by the programmer; a default routine with this
r name is contained within the I/0 library FIORMX.LIB (and hence
> used by the CGCS). This routine writes the following error
P message to the console (within the scrolled part of the CRT
. ¥ screen), accompanied by a "beep" signal:
‘. ***%x%* SYSTEM ERROR (TASK tsknam, LOC hexl) *#*%*x*
7
. ‘ Within this message, "tsknam" is the actual name of the task,
) as specified in the configuration module, and "hexl" is the
.l (absolute) hexadecimal address where the call to the routine

which detected the system error had been performed. 1If, for
example, a FORTRAN routine calls FRACCS in order to gain
protected access to shared resources, and FRACCS detects an
erroneous message waiting at the control exchange, the "SYSTEM
ERROR" message will contain the name of the task the FORTRAN
: routine belongs to and the absolute location of the FRACCS

Kt 4R of
LR

Y

~ call within this routine. The task name and location informa-
h -’ tion provided with the error message does not necessarily mean
- that the error was caused by this task; most probably some
- other task is to blame for it. Still, the interface routines

lack the ability of clairvoyance, and they can only report an
error when it was detected but cannot give any further sugges-
tion what might have caused it. Anyhow, the information con-
tained in the error message may be helpful to detect and re-
move the error source.

Application routines may also use this facility. Still, a
direct call to FXSERR does not necessarily make sense as this
routine returns not the location from where it was called but
the location from where the routine was called which, in turn,
v called FXSERR. This was done on purpose in order to give a
) closer information about the actual point where the error

K

P
3

-

Y

P

.'-

- 159 -

Nt

a
L &

)
f v,

-

-npw)v*--\'-','. > AR
‘.'- ¥a h‘ 8,9.5,%, m 5 ¥

.....

:\k

[} '\-'."

»B} ‘
3 ‘ -

S \
~ _\:

AN 5.2 System Interface and Auxiliary Routines |
) !
A occurred since the interface routine which performs the actual
(¢ FXSERR call may have been called repeatedly by the same task.
N An FXSERR call from a routine which forms the body of a task
x?: would even render a completely meaningless "location" value.
}Q: This can be overcome by calling the routine FXSYSE which
{}: performs the required interfacing and returns the location of
b~ the FXSYSE call with the error message.

\

it Both routines (FXSERR and FXSYSE) are non-reentrant (i.e.,
o protected by a software interlock) and do not require any
e parameters.

o, 4

.lf' 'J
A

¢ ROUTINE FXSERR:
o Routine Type: Assembly language subroutine; not reentrant;
525 protected by a software interlock.
‘-f_.-l
! Initialization: Execution of FXITSK.

e Routine Call:

s
- CALL FRSERR

-

}iﬁ Required Stack: 8 bytes

b
{

el ROUTINE FXSYSE:

.
:;3- Routine Type: Assembly language subroutine; not reentrant:;
g protected by a software interlock.

S0

0] Initialization: Execution of FXITSK.
g Routine Call:

o

o CALL FXSYSE

g

[] Required Stack: 10 bytes

&

.;-':"J.

s

e

i

®.-
»N

oo

Wy

o

A

W 160

oy

Mo

Wy

"\

y

PREF

0

¥ “

oo

‘ YA AN R A NN AN o oY SOOI W '
D00 l"‘c. K n‘:'c A..‘I': NACK o,~'4 A ~‘?‘0‘!’1““:'t“n"u‘?'t‘?i.n’?&9\'!. ‘Ol“’:‘.‘\!"cel'lf"nft'u.“'».,i'- LA t‘:‘t‘:‘t‘.‘n \ :“

S FAR al tole ‘ol Mol ol vop sl dal Sal Al Bal dad ok salh Safh Sall Sad Iodl adlh Safk Sl Al Sath Sad Mok ol -Sa S Sad lal Nalk'Sad Sol Bad Bad tad fink el ol lah Sal Sl Yok oA Sall ok Sl Sad S |

-

\
=
K. - 5.2 System Interface and Auxiliary Routines
K.
o System error messages dgenerated by the iRMX-80 control rou-
{ E tines:
k- FXSEND: Too large message length (> 243) was specified by the
:::6 calling task. No message is sent.
! ¢
BN Ta

N FXWAIT: The type of the received message differs from the type
] n specified with the routine call. The task continues
;;}4 waiting for a correct message.

LA
S FXACPT: The type of the received message differs from the type
N specified with the routine call. The task attempts to
S receive another message.

T FRSEND: none
e
o FRWAIT: See FXWAIT.

",

G % FRACPT: See FXACPT.

‘i .

3 FRINIT: Too large message length (> 246) was specified by the
B calling task. The task is suspended.

~ FRCRSP, FRCXCH, FRDLVL, FRDTSK, FRDXCH, FRELVL, FRRESM,

. FRSUSP: none
4

(
it ‘ FRACTV: none
8 }f FXCFLG: Illegal message detected at the creation/deletion re-
S quest exchange. The message is ignored.
! FXCRFE, FXDLFE: none

e FRACCS: Illegal message detected at the access control ex-
] change.

b X

e FRRELS, FRINAR: none

" =X

i -

g 5.2.1.7 Free Space Manage t

Q é Prior to being able to request memory from the Free Space
. Manager, any iRMX-80 application has to supply a sufficient
A amount of memory to it. This is only possible at execution
1 time; still, it has to be done early enough before memory is
N requested from the Free Space Manager. The initialization
. module is generally the most appropriate place to execute this
N memory transfer, at least the first time.

L) ~J

fa

K 5 - 161 -

3

P X

L}

t

¢

W

s

)

L] \J}
A“lt!'. I.l'l .".‘l'.'l'n lq‘i' oy "

¥,

WY ’,0. W ‘c' W,) N,a) ‘,\,‘.0.‘.0"," '.c '.c ‘.' i.- l.o l,- i.o.‘,'...l".g.:.g.:.,':.’t.! ‘.l“,b. W, .o .:.o ROV 0.. . ,0".1 l‘. ‘.. '.u l.a*',.

LY T8

-
v

y
Sl

.
]
[

hRL ook

x

if 5.2 System Interface and Auxiliary Routines
I~
s In order to permit the initialization of the Free Space Mana-
’ ger from FORTRAN routines, the subroutine FRIFSM was provided.
NN FRIFSM has to be called with the start and end addresses of
wj. the memory to be submitted as parameters. Arbitrary memory
o block lengths may be defined, and FRIFSM may be invoked multi-
e plely. Since the Free Space Manager can only handle memory
}{ blocks whose lengths are greater than 8 and multiples of 4,
\ the lengths of the memory blocks submitted (i.e., end address
- minus start address plus one) should comply with these rules
e in order to avoid the transfer of unusable memory. FRIFSM
:ﬁ ignores all calls with end addresses less than or equal to
}j start addresses; still, it does not check whether at least
o eight bytes were to be transferred. Note: Memory locations
; outside the submitted block may inadvertently be changed if
. blocks shorter than four bytes are submitted!
..-":
J’\'-
S ROUTINE FRIFSM:
'ﬁ“ Routine Type: Assembly language subroutine; reentrant.
-
. Initialization: none
e
oA Routine Call:
>
(' CALL FRIFSM (start address, end address)
o with: start address: INTEGER*2 variable or constant
:ﬁ holding the address of the first byte to be
a7 submitted.
e end address: INTEGER*2 variable or constant hold-
e ing the address of the last byte to be sub-
) mitted.
ﬂ; Note: (<end address> - <start address> + 1) must be
- greater than or equal to 8 and should be a multiple of 4.
e FRIFSM is disabled if <start address> < <end address>.
L Required Stack: 2 bytes
3-
-:‘\:
"y
e
.':',

[I
s 2

o 0 .
LS L R

Fe g

l62 -

\J‘:
)

-
\.I
A

A
',;.:'

N

i

e T T T I T T T A S I U VR SO VR G M " - i » ,m ' e 1Y (] ‘!\‘*\“I +
e " -, RO AT AE AT P A
A SRR TR ‘ . AhURe NhGH, Qe I i Yt O N

........

PN
i

%
e

5.2 System Interface and Auxiliary Routines

5.2.2 Console, Printer, and Buffer Input/Output Routines -
Libraries FIORMX. B, FIOISS.LIB, FIORXI.LIB, and

-y
‘&Y

L FIORXR.LIB

N
Y 3 NAME FUNCTION CHAPTER
Y]

v » FRIOST initialization routine for I/0 funct. 5.2.2.1
o

"W o FRDATI data input routine (from console) 5.2.2.2

. FRSTRI character string input routine (cons.)

[FRDTBI data input routine (from user buffer)

s FRSTBI character string input routine (buffer)

S s FRDATO data output routine (to console) 5.2.2.3
NN FRSTRO char. string output routine (to cons.)

N FRDTPR data output routine (to printer)

v FRSTPR char. string output routine (to print.)
Pl FRDTBO data output routine (to user buffer)

rka FRSTBO | char. string output routine (to buffer)

D FRINMD | input mode selection routine 5.2.2.4
o FROUTM output mode selection routine (console)

" FRPRMD printer mode selection routine

o FRINPR input prompt string modification
‘ li FRCLRO CRT screen clearing routine

- FRSPTO printer timeout setting routine
AN FRMCHG LOGICAL*1 function: output mode changed

~ -

- < FRCSTR control string building routine 5.2.2.5
.

‘ FRSTHX conversion ASCII-INTEGER*1 5.2.2.6
o . FRFXIN conversion ASCII-INTEGER*2
“S | FXFLIN | conversion ASCII~REAL
‘: | FRHXOT conversion to hexadecimal ASCII string

WA | FRFXOT conversion INTEGER-ASCII
kY - | FXFLOT | conversion REAL-ASCII

‘ L
1] ‘i

ol The I/0 routines described within this chapter perform input
' from and output to a console CRT terminal, output to a print-
0 & er, and input from and output to a user supplied buffer. The

latter feature can be utilized to create the output to a text

q type disk file, or to read such a file, respectively.

K .1 “y

7 i In order to permit a reasonable overhead for the application

< " routines (particularly, a reasonable stacksize), the following

. program structure was chosen: Rather small reentrant modules

; M are called by the user task, using its stack, in order to
.

2," - 163 -

\ ’

N 3

R

b

1

L)

5 &

L)

‘n

-~ . ey w i Bk B & .
ot 0 1%.9 (PO) : " (NI L TN TR
‘A!'.'ﬁ'a" ‘5¢"".~".~"to"‘ RO XX ';'t'?‘:.l‘- ",'q' 'l" .l'».l. l"‘\".l'-'l’ . MURCOU "' Y .':'.

......

Batall ralh Sl el van nal salh dals San Wnd wall Sall Snl au i wad vl el ek tade el Sall S ta e Yl SRl Sl Sl S A N v'\"“(“"\““’u“

\.\':)
B
-
) |
. |
%S |
- 5.2 System Interface and Auxiliary Routines
\'\-
o build I/0 request messages. These messages are sent to the
entry exchanges either of the input task INDATX or of the
k> output task OUTDTX. These tasks perform the required conver-
:5' sions and request in turn input from the iRMX-80 Terminal
L Handler, or they send output to it, if applicable.
v
o Despite of the reentrancy of the interface routines, there is
f a considerable time delay inherent with each I/O operation as
- each interface routine has to wait for a response of the I/O
"y task it called. First, the message requesting an I/0O opera-
o tion has to queue at the entry exchange of the corresponding
et input or output task. Second, the conversion routines them-
o selves may require a considerable execution time, and third,
the I/0 task has to wait for the response of the Terminal
o Handler. This response is - in the case of an output request
I - delayed by the time required for sending the output string
ﬁk to the console or printer. Input requests may even be detain-
o ed for an indefinite time until the operator entered an input
;) line. (Still, this does not mean that the processor is total-
" ly busy with the I/O action and cannot execute any other task
- meanwhile.) The execution of INDATX can only be resumed after
o a complete logical input line was entered on the console. It
o is therefore very likely that one task is most time waiting
e for a command entry issued by the operator. INDATX is then
AN actually in a permanent wait for a response of the Terminal
Handler. Furthermore, the echo output - which may be gener-
ated after the input of a line from the Terminal Handler -
:A requires the availability of the output task. If already
\j several other tasks are queued at the entry exchange of OUT-
- DTX, the release message of INDATX will only be issued after
-~ all these output requests were processed. Even operations
- which do not require the service of the Terminal Handler,
,) i.e., I/0O from/to a user supplied buffer, suffer from these
.. delays since their pertinent output requests have also to
- queue at the input exchanges of INDATX or OUTDTX.
{l
'ﬁ' Therefore, a task with a critical timing (or, which is equi-
A g valent in most cases, an interrupt service task) should never
’_ perform any input or output operation. This applies even to
‘o apparently low-speed tasks: a timer task which runs only once
o a second, performing a timed wait (for 20 RMX time units at 50
o ms each) meanwhile, will become inaccurate if it includes an
[output operation. This is true because the timed wait will
) delay the task in any case until 20 clock ticks have passed.
@. If this task, however, has to wait somewhere else, for example
e for the response of OUTDTX, some clock ticks may or may not
~.- already have happened while the task was not waiting at the
;, timing exchange. (The auxiliary timer task FXTIME has, there-
M fore, to use a special approach for writing its time informa-
€ tion to the console screen.)
[
~ 164 -
O
.
o
L
4

) . i o
L § N S)y Toe™s NG DEOBOED 0 CLN 20 CLOLCL T etete T
|:"n.."a. ,1‘,0‘;:‘%.":.‘?-'.":"-v".- “n,"o.“t.'S!..‘?'.‘?'.""‘_l.".0n'.!,‘fh‘hg‘?l.‘..*-"n‘!0."%'&‘%‘.'2'. oty ‘.N‘.‘t' oM, :‘l‘.‘. .‘:‘2':':‘0' AT NS S TCTIRRA

“w
~
\ \“
N N
LY «
v 2' 5.2 System Interface and Auxiliary Routines
Y
N Any task requesting output has to wait until the output action
L G was performed. Otherwise, memory locations could be changed
x before or - even worse - while they are being processed by the
K. output routines. This imposes also the demand that the memory
b locations which were specified by the task requesting output
N must not be changed by any other task. (The necessity for an
b, input requesting task to wait until the input was done is
\ , evident.) Therefore, it is advantageous to provide dedicated
" tasks which perform output operations but no operations which
AN might be urgently needed somewhere else. Splitting the gener-
. ation of output between several tasks might be a good idea if
! 3 the system is rather complex, particularly, if large amounts
K o of output are periodically generated. In this case, several
tasks can improve the system's performance since they can
- queue at the entry exchange of OUTDTX, thus providing some
ﬂ:‘g kind of buffering. 1In contrast, console terminal input should
" be requested by one task only (compare chapter 3.1.6). This
" restriction does not apply to I/O from/to a user supplied
L o buffer: The task requesting buffer I/O submits a buffer of
} * its own with the I/0 request, and this buffer is handled
b whenever the I/0O tasks find time to do so. The sequence of
K ‘s buffer I/0 requests is therefore irrelevant, provided they
- e apply to different buffers for each task.
oL INDATX uses two input sources, namely the console CRT and a
! n user supplied buffer, and OUTDTX can output to three channels,
pe namely, the console CRT, the printer, and a user supplied buf-
S fer. Device I/O is done by the Alternative Terminal Handler
e (compare chapter 3.3.4) which supports console CRT I/O and, in
o= addition, the output to a printer performed via an additional
.~ USART on an I/O expansion board. Only the Alternative Ter-
g minal Handler must be used in conjunction with the modules in
N ! FIORMX.LIB; only this Terminal Handler supports two I/O de-
yle vices and directly addressed CRT terminal output.
o
7 The I/0 tasks do not receive messages directly from the rou-
o tines requesting I/0 operations. Two small reentrant sub-
- routines are provided for input and output, respectively,
“ulie which build messages and wait for the response of the I/O
‘o tasks. This was done in order to off-locad the application
- software from the overhead of creating a message for each I/O
fa operation. Each interface routine has several entry points;
i) some of them trigger directly an input or output operation,
S some can be used to set parameters of the I/O0 routines.
Separate entry points are provided for the input and the
v py output of CHARACTER variables and of variables of any other
o type. This was necessary because FORTRAN uses different
:‘ parameter passing conventions for these two groups. While a
.y normal variable - no matter what its type is - is passed by
“,- its address only, FORTRAN passes two parameters for each
[3
! - 165 -
ii ’J
S
k'ﬁ
.:. .
¢y
W ;‘
K
R

" - e . . . W A A i PR
B T B A R N R o R R e

._
I
7{& 5.2 System Interface and Auxiliary Routines
-..'v(
o
Lﬁﬁ CHARACTER variable, namely, its (start) address and its
(length. (The length of a CHARACTER variable is determined
VG when the FORTRAN program is compiled; it is either set by the
NG declaration or by the length of a string contained in the
,j{ source code.) It is essential that the appropriate interface
.ﬁy routine is invoked for a certain parameter. Calling a string
LT I/0 function with a non-CHARACTER parameter or vice versa will
) inevitably cause a disastrous system crash. There is no
e possibility whatsoever for the interface routines or the I/O
:'% tasks to determine the actual type of a parameter.
Yy
Sl
\.g The scheduling of output to the console CRT (which is supposed
" to be permanently connected to the system) and to a user sup-
* plied buffer is straightforward: A request message is sent by
- the interface routine to the entry exchange of OUTDTX, and the
v

~ calling task waits within the interface routine for the return

NSONOY

:: of the request message which happens when OUTDTX has completed
Y its work. OUTDTX, in turn, sends an output request message of
o its own to the Output Terminal Handler (if applicable), and
%) waits until this request message is returned upon completion.
!— Only upon receipt of the returned request message, the task
T requesting output is released from its message-exchange inter-
Lo« lock. This approach was no more suitable for the scheduling
Al of printer output, since the printer may be disconnected or
N unable to receive data for a prolonged period while it empties
b its buffer. OUTDTX would be detained for an indefinite time
(} in this case if it would wait for the Terminal Handler's
A response after the attempted output to the printer. Console
jgi I/0 would thus also be delayed unnecessarily. Therefore, a
vl different scheduling approach was chosen for the printer
o~ output: The output requesting task waits (within the inter-
e face routine) first for the printer output request message of
) OUTDTX which is returned to this access control exchange
koo, either by OUTDTX or by the Terminal Handler, depending on
o whether information was only added to the printer buffer in
;QA OUTDTX, or whether the buffer was actually dispatched for
- printing. Only when this message was received, the interface
> task sends the request message to the entry exchange of OUT-
o DTX. Tasks requesting output from a (not ready) printer queue
g therefore at the access control exchange, and they are re-
¢ s, leased only either when the printer is operable again, or
" after a time-out (in which case an error message is displayed
%@ in the scrolled portion of the consocle CRT). OUTDTX 1is,

however, not affected by a not-ready printer.

\'
e

*.
A
R
o
.‘;; - 166 -
\\f

& dun

-
)b-

p}.lt.

TSRS Sy AN SRR A [N Dy L0 ', [R A
’:" \1"..'.2....' .la.l N .. "!’l"" (, ’ % ¥y "0 ‘ ‘l ..‘1.“1.' -‘.'l .'.:.':‘:.":'!’l'. I':'::!.!'t“.-\!':. ~ ™ '- Mmm

o L

s 5.2 System Interface and Auxiliary Routines
' TASK NAME: INDATX
q [ENTRY POINT: FXINTI

MR STACK LENGTH: 184 (a) or 174 (b) bytes

\ PRIORITY: 134 (higher than all routines which

v request input)

a4 DEFAULT EXCH.: none

o EXTRA: 18 (a) or 13 (b) (see chapter 3.1.5.1)

-_
SRR R A i

(a) ... for software floating-point arithmetics
(b) ... for hardware floating-point arithmetics

i

INITIAL EXCH: FXINDT

£
B

e

NS, TASK NAME: OUTDTX

(o) {i ENTRY POINT: FXINTO

b7 STACK LENGTH: 200 (a) or 181 (b) bytes

LI PRIORITY: 135 (higher than all routines which

R o request output)

ks DEFAULT EXCH.: none

2y EXTRA: 18 (a) or 13 (b) (see chapter 3.1.5.1)

[l

S (a) ... for software floating-point arithmetics

o - (b) ... for hardware floating-point arithmetics

J‘ t‘ INITIAL EXCH.: FXOUTD

b FXPRAC

l

e

e or The above mentioned stack length values were calculated from

e the stack length information included with the FORTRAN float-

‘ ing-point routines invoked by INDATX and OUTDTX. They are
' necessarily a worst-case estimation which is never fulfilled
)

K for an actual execution since the stack value is calculated by
the ISIS-II Linker as the sum of the stack requirements of all

ﬁ ~ routines which will never all be active at the same time.
AN During practical use, a stack of 150 bytes was found to be by
)’ far sufficient for INDATX as well as for OUTDTX.
j 2,

W,
WY

5.2.2.1_ Input/output Injtialization

Two different types of initialization have to be distinguished
! in this particular context: first, the I/0 tasks INDATX and
: OUTDTX themselves have to be initialized, which, however, need
not be of further concern here. Explicit initialization is
‘ required, though, for the interface between application tasks
N and the I/O modules.

poh)

L

- 167 =~

-
e e n e .

.
§
k

-
- e

X
. \) PO R NG) . N
' AN e'l' 'i.-"' 'l,o") J".n".c '.v l.‘ datanlynlent .c"‘l;oﬂ ﬂ.c.'.o, b oS Y424 l.|,i‘|. C I il) s' K o ! ‘t‘ ! Wt u‘,‘-‘.‘o’ Wl ‘!‘e‘!‘. in W

I > o
19
L
15

)
-
-

&
&

-
n
)
Y
-
-
.
)
-

N
N\ -

5 £

L™ Ny

AR
APPSR

L)
2 T an

PN

NN -

7
&

iy ey #
PR] ‘l P '- L5 Y
[N -‘,‘\ A o XARAAS

L

h i

—

(A
v

N

a a
»
‘a's

._..:'.:....'..:'..I' ".‘ U ’\ \

N,

’

AR , XN

-
[y N W),

-

-P‘v‘;—v\"‘*n'IWﬂ‘m‘;ﬁ?fTIWrWWWWT,V\"\“V\"\‘("’("1-n‘—~. TaN " T« T T a" _T

5.2 System Interface and Auxiliary Routines

Special precautions have to be taken when the Static Task
Descriptors of the tasks are defined. Each task which uses
FORTRAN floating-point arithmetics has to add either 13 or 18
additional bytes to its Task Descriptor, depending on whether
hardware or software floating-point arithmetics was chosen
(compare chapter 3.1.5.1). In addition, each task that uses
the I/0 routines has to add two more bytes to its Task De-
scriptor in order to permit the installation of a pointer to
the exchange-message combination required by the I/O routines.
Only one value for such an offset is legitimate within the
entire systemn. If none of the tasks which perform I/0 uses
FORTRAN floating-point functions, an "EXTRA" value of 2 may be
chosen. Otherwise, the "EXTRA" value of all tasks which use
the routines in FIORMX.LIB must be set to 15 (for a system
including an iSBC 310 High Speed Mathematics board) or to 20
(1f software or 8231-based floating-point arithmetics is used)
if one or more tasks perform not only I/O but also floating-
point operations. A corresponding offset value - 0, 13, or 18
- has also to be specified at system linkage time, together
with some other system constants (compare chapter 5.2.2.8).

Furthermore, each task which will perform I/0 operations has
to call the initialization routine FRIOST once and only once.
The task has to specify the name of a 31 byte location in
read-write memory where FRIOST can build an I/0 request mes-
sage and the response exchange for the I/0 tasks. It is this
address to which the pointer added to the task's Task Descrip-
tor points. A task can only perform either input or output at
a given time; therefore, only one I/0 request message 1is
required for a task. Linking this message (and the response
exchange) to the Task Descriptor of the task allows to omit
this information in any future I/O request as the interface
routines can independently determine these addresses. This
saves a considerable program code overhead.

ROUTINE FRIOST:

Routine Type: Assembly language subroutine:; reentrant.

Initialization: none

Routine Call:

CALL FRIOST {exchange)

with: exchange: Name of a 31 byte long memory location
where FRIOST can build an 1,0 request message
and a response exchange for the 1,0 tasks.

Required Stack: 2 bytes

- 168 -

P YV
"\(‘\"

B TS W, e TR Y LIS T W I U, TR TS WL Wk TR L
PRy e e & o .r.r:.r'\: ..1':*:*5(:3:!';‘:‘,!&!"

WEWNARRTEYIIT AT RN q

2 5.2 System Interface and Auxiliary Routines

, 5.2.2.2 Input Routines

s $5.2.2.2. Pro i Interface

v TWe console input routine entry points are provided, FRDATI ‘

- and FRSTRI. FRDATI can handle all kinds of variables - IN-
TEGER (including LOGICAL), REAL, and Hollerith type - except

R variables of the type CHARACTER which must be input by FRSTRI. %
o Two routines, FRDTBI and FRSTBI, are provided for "input" ‘
: (i.e., conversion from ASCII into binary numeric notation)
from a user-supplied buffer. The contents of the user sup-
N plied buffer are scanned for the requested input in this case,
+ rather than data obtained from the Terminal Handler. No echo
output is generated on the console. Therefore, multiple tasks
S may concurrently use the buffer input feature, provided they

submit different buffers.

The input routines must be called as follows:

¥,
> CALL FRDATI (control string,variable,status)
or
- CALL FRSTRI (flag string,character variable,status)
. or
* CALL FRDTBI (control string,variable,buffer,status)
or
& CALL FRSTBI (flag string,character var.,buffer,status)
<control string>:
<control string> can be either a string, enclosed between
single quotes, or a CHARACTER type variable, holding the
[following information:

control string := 'flag, type'

- where <flag> is an integer which determines the actual
g input operation, and <type> is a single character (upper-
or lowercase) which controls the kind of conversion per-
formed by the input routine.

oy
‘. .
. <flag string>:
<. No <type> identification is required in the case of FRSTRI
bad or FRDTBI; the control string comprises therefcore only the
. value of <flag>, enclosed in single quotes, or the name of
A a CHARACTER variable holding a corresponding string.
N |
o
"\
f.'
T uf

P
v

- 169 -

ROL] 0 U AN T A RN PN P M T TR T N TN N T
R \'.'A':fl‘:‘.u'.,n'\. : 1 f’-‘,l“:"\:i’-:h'ol.h"'l’u,",a'!'t.‘-'w,"t.‘mﬂt.‘fﬁ.‘,‘!"!o WUttt gt Y

.‘.—":‘": %:

®,
-

At

5.2 System Interface and Auxiliary Routines

LN]

<variable>:

. -

<variable> is the name of a single variable whose contents
are to be set by INDATX. The type of this variable should
correspond to the <type> specified with the control string
in order to avoid the destruction of other data if INDATX
\ reads more bytes than are reserved for the specified vari-
able. Only CHARACTER variables may be used in a FRSTRI
call. The length of a string which is input via a FRSTRI
(o call is automatically determined by the dimension of the
s CHARACTER parameter. (A FRSTRI call with a CHARACTER*10
- variable specified as a parameter will, for example, read
4 10 characters.)

S

P

Note: INDATX always returns a signed two-byte integer
(INTEGER*2) if "I" was specified as <type>. It is, there-
fore, not possible to assign an input value directly to an
INTEGER*1 variable.

B . F.l.“x "L"k"l.f'.'k

<status>:

»
.

After each input request, INDATX returns a one byte Bool-
ean variable to the parameter <status> which indicates the
result of the input request. The value of this variable
s is .FALSE. (00H) if the input request could be fulfilled:;
/ it is .TRUE. (OFFH) if either an input error occurred or
fv if the input string was empty. No new value is assigned
#\ to <variable> if <status> was set to .TRUE.; the applica-
. tion program should check this flag in order to determine
" whether it did receive new data or not. It is recommended
> to use a LOGICAL*1l variable as <status> parameter; this
’ variable can easily be checked in a logical IF statement.

L

<buffer>:

* This parameter should be the first byte of a user supplied
a buffer. The buffer should be declared as an INTEGER*1
array under FORTRAN; it must by no means be a CHARACTER
type variable. The first byte of the buffer (i.e., the
first element of the array) must be set to the length of
the actual buffer (which starts at the third element of
the array) prior to the call to FRDTBI or FRSTBI. The
second byte is reserved for INDATX use and should not be
modified by the user; the actual contents of the buffer
start at byte 3. The buffer may be referred to either by
BUFFER or by BUFFER (1) within an FRDTBI or FRSTBI call;
prior to the call, the data must be provided in the buffer |
beginning with BUFFER (3) which is to be converted accord- }
ing to <type> and to be written to <variable>. INDATX may

;:---,.
SEASAENN @ 0Ty

- 170 -

’ -’. ". 'l}.‘ (.'l..

AR

% \’i"\ \-\')'\'\"n) "] ~ ' .
Y v t- 8yl %" ?: " !i 0 W ':.l DO ‘\‘5' Yy, '0."a,0‘a?l'o.i W) 0.' v. "a“'t.' g ,‘vlf' O "e.".‘" *' Y l’c"‘\, W

F20

SN
.:.d's-’ &
%

“

SR
e

YNNI

-

..’;-.v‘v.
el

o
P’

v A,

<
Nt
“x

e e »
AP AL
S 555

-~
-

- o
-

1™

FE7
PLRAEL

Ogg‘

Tl
1'&.'
‘l

-
oy Ry
hd

Y
0

_..4,:“,.
272 A @
-

}
HSYNNSN

A
LY

}
»

OO w
Y L%}] i}
‘ .‘1‘.‘u"‘l”‘t"'-'.‘."‘n"'o

5.2 System Interface and Auxiliary Routines

parse up to the number of bytes within the buffer which
was specified by BUFFER (1).

Example:

INTEGER*1 BUFFER (130)

c (The buffer proper should contain 128
C bytes in our example, plus the two
C length bytes)
BUFFER (1) = BUFLEN
Cc (BUFLEN must be <= 128)
DO 100 I = 1,BUFLEN
BUFFER (I+2) = ...
C (Place data into the buffer)
100 CONTINUE
CALL FRDTBI ('l1l,E',X,BUFFER,STAT)
c (Scan the buffer for a floating-point
c number, convert it and store it in X)

The input functions and conversion algorithms are selected by

means of the parameters <flag> and <type>. <flag> affects the

handling of the input line which was entered by the operator
or contained in the user-supplied buffer, and <type> controls
the conversion algorithms:

* <flag>:

<flag> controls eight functions of INDATX which are mapped to
the eight bits which represent the one-byte integer <flag>.
Its value can be calculated as follows:

<flag> = 0 (if the current input buffer contents are to be
processed, starting at the input pointer, i.e.,
after the character last read)

+ 1 (if a new input line is requested; in the case of
buffer input, the buffer pointer is reset to the
beginning of the input buffer)

+ 2 (if input is to be performed after the input
pointer was reset to the beginning of the 1line
which is currently kept in the buffer)

+ 4 (if input is to be performed after the input
pointer was moved to the next blank)

+ 8 (if input is to be performed after the input
pointer was moved to the next digit)

+ 16 (if input is to be performed after the input
pointer was moved to the next character)

+ 32 (if the echo output is to be suppressed)

- 171 -

IR Do ORI

A
[

P e

TN AN

R

27 LS

>- o o G

2

L v YLYL, T

N T AL

-

5.2 System Interface and Auxiliary Routines

+ 64 (if input is to be performed after the input
pointer was advanced to the first floating-point
number)

+ 128 (if input is to be performed after the input
pointer was advanced to the first non-blank char-
acter)

The interdependence between the bits 0 through 4 and the cor-
responding functions is shown in the following table in order
to make the use of the <flag> parameter easier. Bit 5 which
suppresses the echo output is not included in the table in
order to enhance its clarity:; a value of 32 has to be added to
the appropriate <flag> value shown below if it is to be set.
The highest two bits, 6 and 7, are hardly to be used in con-
junction with other values than 0, 1, or 2.

ADVANCE TO NEXT ALPH.CH. ADVANCE TO NEXT ALPH.CH.
ADVANCE TO NEXT DIGIT ADVANCE TO NEXT DIGIT
ADVANCE TO NEXT BLANK ADVANCE TO NEXT BLANK
RESCAN INPUT LINE RESCAN INPUT LINE
READ A NEW LINE READ A NEW LINE
<flag> ' <flag> I
0 0 0000 16 1 0000
1 0 0001 17 1 0001
2 0 0010 18 1 0010
3 0 0011 *) 19 1 0011 *)
4 0 0100 20 1 0100
5 0 0101 21 1 0101
6 0 0110 22 1 0110
7 0 0111 *) 23 1 0111 *)
8 0 1000 24 1 1000
9 0 1001 25 1 1001
10 0 1010 26 1 1010
11 0 1011 *) 27 1 1011 *)
12 0 1100 28 1 1100
13 0 1101 29 1 1101
14 0 1110 30 1 1110
15 0 1111 %) 31 1 1111 *)

*) The rescan option is inoperative if a new input line was
requested.

Setting the lowest-order bit of <flag> (bit 0) in a FRDATI or
FRSTRI call makes INDATX request a new input line from the
Terminal Handler prior to performing any conversion. The
previous contents of the input buffer are overwritten, and
data are lost which have not yet beesn read from the previous

- 172 -

O

Ve e

>y

4

> ,;"

Ry :
SANSTh

»

NN

X B _A -y
AL
<1

- L
gyl e

x
x

= . -
R et

i o
o

-

ZLR@F I rrr T @ F

-
-

-
SNled
PAd

P

el

SOAG S s e

L0,

LaK)

R

55‘&; -

“

5.2 System Interface and Auxiliary Routines

input 1line. In buffer input mode, the function of bit 0 is
identical to that of bit 1. Either one of those bits should
be set when new user supplied buffer contents are submitted
for scanning.

The second bit (bit 1) determines whether the pointer within
the line buffer is to be reset to the beginning of the buffer
prior to reading. An input request with this bit of <flag>
set can process the entire input line, from its beginning,
while otherwise the requested data are taken from the charac-
ters in the input string indicated by and following the cur-
rent input pointer position. The input pointer is normally
set to the first character that has not yet been processed,
and the next input request is satisfied starting at this
position. The rescan option moves the pointer back to the
beginning of the line, thus permitting the same input line to
be processed by repeated read commands.

The third, fourth and fifth bits (bit 2-4) allow data selec-
tion within the input line. They make the input pointer
advance to the next blank, digit, and alphabetic character,
respectively. ("Blank" means spaces and control characters
such as "tabs", as far as they are not regarded as commands by
the Terminal Handler and therefore stripped from the input
line. "Digits" refers to the characters "0" through "9", and
"alphabetic", to "A" through "2", upper- or lowercase.) This
feature is very helpful if combined entries - e.g., entries
consisting of command keywords and numbers - have to be pro-
cessed. Setting more than one of these bits makes INDATX
first search for the first blank following the current posi-
tion of the pointer, then for the first digit, and finally for
the first alphabetic character (if applicable). Note that
signs are lost during numeric input if bit 4 is set. 1In order
to scan for signed numbers, or numbers in floating-point nota-
tion which may start with a decimal point, it is advisable to
use bit 6 rather than bit 4 (see below).

The sixth bit (bit 5) permits, if set, to suppress the genera-
tion of echo output in the split-screen mode. This can be
helpful if information is to be added to an input line before
it is echoed back. This flag bit is ignored in the completely
scrolled screen mode where the echo of the input line remains
on the screen anyhow, and it is ineffective unless a new input
line was requested (bit 0 set). Since no echo output is
generated by the buffer input routines, bit 5 is ineffective
in this case, too.

Bit 6 permits the search for numbers in all permitted fixed-
and floating-point notations. The pointer is advanced until
any one of the following characters is detected: "O" ... "9",

- 173 -

PO ALt AP L APl Sl D

(M A1)
AOITNUNGN

L3

[4
%
P
\:,,:
“:j 5.2 System Interface and Auxiliary Routines
vt
o, NEM or e, w . n_ ngn and "¥-", Numeric entries which would be
{ mutilated if bit 4 were used can thus be processed properly.
fA b
::ﬁ Bit 7, finally, advances the pointer to the first non-blank
n? character. This switch permits to skip blank portions of the
R e input line.
‘l.
53- * <type>
"
vjﬁ The <type> parameter can be one of the following characters or
K] strings:
L]
R Aw: The next w (w < 128) characters, beginning with the
- position of the pointer, are copied into memory loca-
;{E tions beginning with <variable>. The programmer has
s to make sure that the specified string length w does
’{ﬁi not exceed the available memory area which is reserved
35 for <variable>. (In most cases, <variable> will be
° the name of an array. It must by no means be the name
t of a variable declared CHARACTER although it is pos-
b sible to assign data to a CHARACTER variable by read-
[+ ing it into an array of, say, type INTEGER*1l and the
- same length, which is linked to the CHARACTER variable
..:. with an EQUIVALENCE statement. Still, the FRSTRI call
Alos is more convenient for reading CHARACTER variables.)
- The input string whose length was specified with w is
b7 filled in any case: 1if the logical end of the input
v string (a carriage return) is encountered before w
'jﬁ characters were read, the remainder is filled with
Tt spaces. The string may even exceed the length of the
= input buffer. In this case, a new input line is re-
D quested from the Terminal Handler, and the new input
. is added "seamlessly".
B~
‘o B: The input string is interpreted as a hexadecimal
& number. Input is terminated if any character except
o won _,, tMgn_wpw __ WEN or "a",,, "f" js detected.
@ An arbitrary number of hex digits may be entered; only
o the value corresponding to the last two digits is
.&\ stored in the (INTEGER*1l) variable supplied by the
"y calling routine.
{J
E,F: The next contiguous string of numeric characters is
, interpreted as and converted to a floating-point
L number. "E" and "F" are equivglent commands. The
‘O numeric string is considered terminated when a charac-
50g ter other than a sign (accepted only in the first
e positions of the string or of an exponent), a decimal
) point, an "E" (upper- or lowercase, accepted only once
‘ [}
I;"l - 174 -
e
)
e
o::'l

AN ' \ AL OLGY, x AT A AT TG 00 oy
“:f:‘:.'c‘t?:':‘-‘t Wt e PR RINADASAIAAT ST l.a O .,i.:!'.c.i.o'.'\»'l.t_l.:'h he(ie A R KR s,t'o‘.ﬁ,.'u,. bR

A
AN

5.2 System Interface and Auxiliary Routines

o within a number), or any of the numbers "0" through
ﬁ "g" js encountered. The numeric string must not ex-
tend beyond the physical end of the input buffer. 1If
the end of the buffer is encountered before the nume-
ric string was terminated, an error message is output,
and no value is assigned to the REAL variable passed
as a parameter by the requesting task. No formatting
' restrictions apply:; numbers can be entered in any
arbitrary combination of floating-point or scientific
-~ notation (compare the examples in chapter 5.2.2.2.2).
K- Leading spaces are ignored. The full range of REAL
variable values is supported. Numbers greater than
Ey the maximum floating-point number (+3.4E38) are enter-
ed as the greatest permissible number; underflow

- numbers (less than *1.17E-38) are set to zero.

s
[I 4

{l

)
s
1,

7
'k,l.{l

I: The next contiguous string of numerals is converted
. into an INTEGER*2 variable (two bytes, signed). The
X &: end of the string is recognized if another character

v than "0" through "9" is encountered. The string must
N not extend beyond the physical end of the input buf-
- fer. Aside from this demand, any input string length

a and therefore any magnitude of the input number is
= permissible; still, the numbers will be treated modulo
V. (32768) (compare chapter 5.2.2.2.2).

The input string is interpreted as a hexadecimal num-

) ber. Input is terminated if any character other than
S oM ... mow mpAm ., MF", or "a" ... "f" is detected.
b T An arbitrary number of hex digits may be entered; only
- the value corresponding to the last four digits is
stored in the (INTEGER*2) variable supplied by the
! calling routine.

- Xw: The next w (w < 128) characters are skipped, beginning
e with the current position of the input pointer. A new
I input line is requested if the length to be skipped
) extends beyond the physical (but not the logical) end
% § of the input line.

’ox
B Zw: A total of w bytes, beginning with the location speci-
' fied by <variable>, is set according to the up to
NERTY (2*w) non-blank characters following the input pointer
SR position (leading spaces are skipped, though). These
¢ characters are interpreted as hexadecimal digits. The
. left-most digit is stored in the highest-order loca-
sy tion, and so on. The transfer of the data is ter-
. minated either if the specified number of bytes was
- filled or if any character but "0" through "9" and "A"
:;' through "F" (upper- or lowercase) was encountered.

:
Y - 175 -

i Q)

) Y E :) 0 OO
" UBOGUOUOOUO ! 0 DOOBOOUOGOINLOUE UOO0OLY)) §) OO
X nJ .'n‘.'g "g‘f'.‘f-.°'v«'f'.‘f- o ."l."l.!“'!‘t "?‘s t'a‘t‘o.:'o.!'a"‘li.‘t‘s'a\.a‘l‘.'é."t..‘v'!h‘.’»‘«'c. ‘o'.'o‘?’n'“o"h' IO M OO RN

A « .

o

72
AN/

A

K<

"%

s
s

L4
L

GA S48 Y
{ r

N

.‘. = {'.. -
AT

O
LAWY,

LA ALY
2

]'.\J

551

A

> g
ST 0
Pl 2

".l<
41', A

- e o e o
R
R i A

f',}

i
AINCLtrhr

2 L

5.2 System Interface and Auxiliary Routines

The remaining half-bytes which could not be set by the
input string are set to zero in this case. (Note that
the input pointer remains at the location where the
first non-hex character was found; the next read
request will start at this position.) A continuation
of the input string across the physical input buffer
boundary is possible.

Note: An omitted numeric extension of the "A"™, "X", and "2z"
type commands is interpreted as zero.

Sample calls:
LOGICAL*1 STAT

CALL FRDATI ('l,F', X, STAT)
IF (STAT) ... (error exception routine)

This call assigns a new floating-point value to the REAL vari-
able X. The input buffer is cleared, and a new input line is
requested prior to converting the decimal string into the
binary floating-point representation.

CHARACTER*10 CHAR

CALL FRSTRI ('0', CHAR, STAT)

The next ten characters, beginning with the current position
of the input pointer, are transferred to the CHARACTER vari-
able CHAR. The input buffer has to contain the required
information from an earlier input request. The remainder of
the variable CHAR is filled with spaces if the logical end of
the input line (a carriage return) is encountered. No input
is requested from the operator.

CHARACTER*3 CONTRL
CONTRL = '1,F'

CALL FRDATI (CONTRL, X, STAT)

This call is identical to the first example. Using a CHARAC-
TER variable as <control string> parameter may save some
typing, particularly if the same control string is repeatedly
required. (It has no effect, however, on the program code
length as identical strings are allocated to the same internal
location by the FORTS80 compiler.)

INDATX has a built-in error detection facility: Erroneous or
missing parameters within the control string or fixed- or
floating-point numbers which extend beyond the physical end of

- 176 -

N > T AT AN AN A IO AN IR
HOos \‘:'ﬁ.o. ‘n'.l‘nft':‘.l‘:.l ™ ’:?"15"'.0‘.. [t P OO ifl"..,l" ‘.,c‘.‘n‘:&*:. ORI T b AU AN

(]
UG NA

rier

0’.

W .:‘

: ~ 5.2 System Interface and Auxiliary Routines

L\ .

W, the input buffer are reported on the console CRT as an "INPUT
G ERROR™". In this case, the <status> flag is also set to
- .TRUE., and no new value is assigned to the <variable> loca-

] tion.

1R d:n

I~

'!1 ROUTINE FRDATI:

\

‘ 5_; Routine Type: Assembly language subroutine; reentrant.

#

‘o Initialization: FRIOST call.

D :N:

K8 o Required Stack: 14 bytes

- &

b ROUTINE FRSTRI:

3 g

59 2 Routine Type: Assembly language subroutine; reentrant.

SRR s .

q e Initialization: FRIOST call.

La

AN Required Stack: 14 bytes

S

ROUTINE FRDTBI:

'; n Routine Type: Assembly language subroutine; reentrant.

l

. - Initialization: FRIOST call.

X~

b Required Stack: 14 bytes

X

1 ROUTINE FRSTBI:

)

&

I ::' Routine Type: Assembly language subroutine; reentrant.

)

K

' Initialization: FRIOST call.

% Required Stack: 14 bytes

Q. -

"

s &
- 5.2.2.2.2 Operator Interface

The input routines are designed such that a maximum of data
safety can be combined with a maximum of convenience for the

o b

% operator. The following table shows the resulting internal
" data for different input strings, read with different <type>
Y E’t parameters.

b, - 177 -

W'

e .

(N

)

"

q

v 0 R X | QI Y Mo O) O Y o
"". ! Y 'Y e i !" ".l"-l ot 4 " ! ‘,l".s X5 : .1" "l.:' ', ’. Aa".c".n'i.!"f:".\". ?l.:'lft‘l?ﬂ.v'i.:'c-' e -0-'0%'0!' Ja e

R

iy))
b 5.2 System Interface and Auxiliary Routines
b in

W INPUT STRING A4 E,F I z4

A", ABCDEFGHIJK "ABCD" 0. 0 ABCDEFO00
;*c #) WEFGH" 1.0000 0 EF000000
o XY2 "XYZ " 0. 0 00000000
¢¥ 123.456 "123." 123.456 123 12300000
Wy 1.5E-3 "1.5E" 0.0015 1 10000000
V) +4321.012E-002 "+432" 43.21012 4321 00000000
oM -E4 "-E4 " =10000.0000 0 00000000
o E99 "E99 " 3.40E+38 0 E9900000
“k: 32767 w3276" 32767.0000 32767 32767000
qﬁ. 32768 "3276" 32768.0000 0o 32768000
N 32769 "3276" 32769.0000 1 32769000

-32767 w-327" =32767.0000 =-32767 00000000

o -32768 w-327" =-32768.0000 =-32768 00000000
!é& -32769 n-327n =32769.0000 -1 00000000
'A: 40490FDB *) "4049" 40490.0000 7723 40490FDB
rogy
312 #) 1If <flag> bit 6 (compare chapter 5.2.2.2.1) is set.

?% *) This is the floating-point representation of PI
)iéa (3.14159264) .

Ef (Note that the hexadecimal representation in the right-most
o column was adjusted to show the highest-order byte at the
¢ left. The internal storage of floating-point numbers reverses
- this orientation, i.e., the lowest-order byte is assigned to
R the lowest address, and the highest-order byte, to the high-
SRS st
. est.)

QE{- Input rules for fixed- and floating-point numbers:

J * Leading spaces or zeros are ignored.

o

o * The number is terminated by the first character which is not
Wl permitted for the particular format or by the logical end of
p é the input line (carriage return).

KA

,’ * If several numbers are requested within one input entry,
w.: they have to be separated by spaces (unless other demands
}'§ are imposed by the application software). Any number of
ﬁa» separating spaces is permitted. It is, however, possible to
) use arbitra delimiters between multiple input numbers if
B ry .

Sy the <flag> bit 6 (advance to next number) is set.

. @,
B * Plus signs are automatically assumed if no "minus" is
. jb entered.
A

[~

poos

®..

?{b - 178 -

o “‘..

o

0

e

@

' d o (AR T I MR TN A A M R h ROl 0
‘.‘l:"!t:‘,'tt‘?::'fh"a"'"-“.*:‘!n:‘.":"".'.':ﬁ"-ﬁ '.'::‘zit“,::.‘l..‘!!."t,'él..‘.l:-‘?h'..'-,".!»’,0.',6.‘?l."0,‘?n"(,‘!b."l."h"!," BEAONORGAON MMM

bA00 IO
?-'.!A'.f-'.?u‘:?"t?"-f-'_-fl _c-,‘?:t'fo‘

.

v v
.
.

14‘ /;.{_ P

o

£

s

LS et
LY e

e
(4 ..'.1

..“..4, ,.
ANV F A ALY
AN ‘NAS

} S 4
1B

“» e
W

s |

.
[2]

¥
al

n'!"-"\

B e A) x
U AR ST A L LA AT AT G L RSN

5.2 System Interface and Auxiliary Routines

* Floating-point numbers may be entered as a (signed or un-
signed) exponent only, omitting the mantissa. The character
"E" or "e" is therefore interpreted as 1 (1.EO0).

* A decimal point is assumed after the last digit of a float-
ing-point number if no decimal point was entered.

Input Line Editing and Control Characters:

The I/O routines support the line editing features and the
control character set of the Alternative Terminal Handler.
For a full explanation of the control codes processed by the
Alternative Terminal Handler refer to chapter 3.3.4.2 or
Appendix 5. The following summary shows the line editing and
control commands valid for the FIORMX I/O routines. Note that
ESC (Escape) is used as a line deletion rather than a line
termination command by the I/0 Interface routines.

All control characters except the following ones are rejected

by the Terminal Handler (except when entered immediately after
a "Cntl-p"):

CR (Carriage Return) - Line termination.

LF (Line Feed) - Line Termination.

RUBOUT - Delete last character.

ESC (Escape) - Delete current input line.

Control-X - Delete entire input buffer.

Control-Z Delete current input line, and return end-of-file
(compare chapter 5.2.2.7).

Control-R - Re-write the input line on the console screen.

Control-P - Accept control characters literally.

Control-S - Halt output to the console.

Control-Q - Resume output to the console.

Control-0 - Discard or resume output to the console.

Control-E - Halt output to the printer.

Control-F - Resume output to the printer.

Control-V - Discard or resume output to the printer.

Control-C - Invoke iRMX-80 Debugger (not used in the CGCS).

Control-A - Exit from iRMX-80 Debugger (not used in the CGCS).

"Cntl-C" and "Cntl-A" can be locked out if the Alternative
Terminal Handler flag location RQDBEN (debug enable) is reset
to a zero value (which is done in the CGCS).

- 179 -

- - - - ® - ot R o P - - [3 &4 - L T
e A0 L e o Lt B 8, Nt M AL S A

24

Nl
\d
) Yy
) f‘
'ﬁ: 5.2 System Interface and Auxiliary Routines
o 5.2.2.3 Output Routines
(5; Six routines are supplied within FIORMX.LIB which permit the
::, output of CHARACTER and of other type variables to the con-
~7 sole, to the printer, and to a user supplied buffer. FRDATO,
w FRDTPR, and FRDTBO permit the output of all variables (except
\' of type CHARACTER) to the conscle, to the printer, and to a
\ user-supplied buffer, respectively, whereas FRSTRO, FRSTPR,
4 and FRSTBO are exclusively provided for handling CHARACTER
Rens variables. While the console and printer output routines
‘jq generate actual output, the buffer output routines only de-
N posit a string which is obtained by the conversion of (binary)
oY data within a user-supplied buffer. The further handling of
this buffer is under the responsibility of the application
nct routine.
;22 The console output routines can be programmed to generate
'O either a normally scrolled or a split screen output. 1In the
gj\ normally scrolled mode, output (and the input echo) is added
Vel after the last line written to the screen, i.e., most of the
L time in the last line of the screen. The previous output
o~ moves up by one line.
N
f; In contrast, the output area is divided into three main zones
'~ if the split-screen mode was selected: Part of the screen can
W) be directly addressed, and there is no relation between the
(j position of an output string on the CRT screen and the time
S when it was written. Another part of the screen forms a
o scrolled area. Output written to this area is added in its
[~ last line, and the previously written lines move up by one
O line. The software overhead for generating such a scrolled
W output is, however, relatively large as each line of the
scrolled block has to be re-written each time a new line is
v added. For a scrolled block of eight lines, therefore, eight
K lines have to be written when a one line output is requested.
b (This is inevitable as this type of scroll is no more per-
;\j formed by the hardware of the terminal but by the software of
! OUTDTX.) With regard to the large overhead, the size of the
[scrolled block and the output to it should be confined to a
L] minimum consistent with the application. (Hence, the CGCS
g uses a scrolled area of five lines rather than the default of
o eight lines.) Any echo output, if requested, is also directed
:Qﬁ to the scrolled block. The third area on the screen, finally,
. is the input area which may but need not be contiguous to the
. scrolled block. While the scrolled block can be freely moved
DS on the screen under execution-time control, the position of
'AS the input area is fixed at the bottom of the screen. 1Its size
"oy must be defined as a configuration constant; it must be large
e enough to permit the cursor to perform the jump to the next
_} line without leaving the screen area when a carriage return is
o :
[-% - 180 -
<
X
-~
23
L
2 '
D

AT I NN n AT o o o 7 W o W L P - " R R R T AR R A2V
A .’..ﬂ.,ﬂ., e o N P R Tt S R »ﬁmfmnA R TPy FhES A SR MR ﬁﬁ

rd

N
TN
f&“ L)
o
-\t‘ -
WA
;&: 5.2 System Interface and Auxiliary Routines
~ .
-y entered. Otherwise, a (hardware) scroll would ensue and, in-
‘ evitably, a lot of confusion in the next data outnut. The
N Alternative Terminal Handler supports a d=fault input line
N length of 80 characters. An input area of two lines is there-
"j o fore only sufficient if no input prompt string (compare chap-
.jgj; ter 5.2.2.4.4) is to be used (which applies to the CGCS). l
.jﬁ Otherwise, the number of input lines kept in the constant
\ ! FOLINC (compare chapter 5.2.2.8) should be set to 3. Note,
L however, that the Alternative Terminal Handler clears two
e lines in the input area (the input line proper and the line
S following 1it); therefore, no information can be reasonably
NN written to the bottom line on the screen if FOLINC was set to
N e 2. The last line of the screen is generally only required as
{ a buffer zone for the cursor; it is not automatically cleared
AN if FOLINC is set to a value greater than 2. It can therefore
Pt be freely used for directly addressed output. (Note that
- directly addressed output can be written virtually anywhere on
A the screen. It will, however, be =2ventually overwritten or
0 N deleted if directed to the scrolled area or to the input
EaZa .,
o area.)
tji\; The output routines must be called as follows:
o CALL FRDATO (control string,variable)
.:'.: . or
7 E CALL FRSTRO (control string,variable)
, or
M CALL FRDTPR (control string,variable)
A . or
P CALL FRSTPR (control string,variable)
o or
B] CALL FRDTBO (control string,variable,buffer)
. or
D CALL FRSTBO (control string,variable,buffer)
XA
-.,n. !-'
SO <control string>:
]%} ~ <contreol string> can either be a string, enclosed in
NN single quotes, or a CHARACTER variable which holds the
P~ appropriate information (compare chapter 5.2.2.5). The
b control string must have the following format:
N
4 e
° T a) for FRDATO, FRDTPR, and FRDTBO:
'vi ¢ control string := 'line,column, format'
g
J{ ‘ol
:5 . b) for FRSTRO, FRSTPR, and FRSTBO:
K
W'.-: control string := 'line,column'
9.,
2 - 181 -
\:'\ [Py
s v
£
L2
AT
A l_..
v _

T R L et el
'.‘." -, ¥R \'.‘-"‘-J."'-\'-J'\‘."tf'\"\ . '-"\ -

'?'.‘"'\"'.“1

L.
E{} 5.2 System Interface and Auxiliarv Routines
}?- A <format> may be specified also for FRSTRO, FRSTPR, and
FRSTBO; it is, however, ineffective.

~ The reason why a control string was chosen rather than
P separate parameters is that this approach saves consider-
> ably FORTRAN code, compared to the specification of dif-
B0t ferent parameters. One of these, <format>, would have
V) been a CHARACTER type variable anyhow. The control string
o approach adds also safety to the system as an omitted
?ﬁ parameter within the control string can under no cir-
?N cumstances affect the system operation. Conformity rea-
f” sons demanded the extension of this approach to the input
e routines where its advantages are less stringent.

- <variable>:

.l;-:

Jﬂ <variable> can be the name of a variable whose type cor-
AT responds to the output routine and to the <format> parame-
o ter, if applicable. It may also be a constant. Note that
Xax string output is permissible only with FRSTRO, FRSTPR, or
2« FRSTBO; a suitable string may be specified directly as a
NN subroutine parameter.

\"'\
b <buffer>:
e
1S <buffer> must be the name of a suitable buffer array (by
{ ‘ no means of type CHARACTER!). Usually, an INTEGER*1 array
e will be chosen. The first two bytes of this buffer area
o (i.e., the first two elements of an INTEGER*1l array) are
YN used as control bytes: The first byte has to hold the
[~ - available number of bytes within the buffer region proper,
i stored there prior to the output routine call; the second
D byte is used by OUTDTX and should not be changed by the
‘ot application program. It holds the number of the location
o5 within the buffer proper which follows the last location
o written to. The buffer proper starts with the third byte:;
o OUTDTX builds an output line there. Note: Although the
1] structure of the buffers and control bytes is identical
9 for INDATX and OUTDTX, the same buffer should be used for
N input and output with great care only. In particular, the
,*i buffer pointers which are kept in the second byte of the
;é? buffer are changed by both routines. (This does not mat-
- ter, however, if the input buffer pointer is set to the
O start of the buffer (with <flag> bit 0 or 1) before each
0. input action, and if the output pointer is not used be-
e cause a non-zero <column> value is passed with each output
e, call.)

>

:ﬂ The output routines permit random position;ng of the output
po gt strings on the console, on the printer, and in the output buf-
| X

:.::! - 182 -
Lo
-,
o
2.

o

4:"‘.:

4
¥

ks e AT A e A At e A A AL e L et e e A At A St A A AT A AT AT A
a ; AT '.r:-l'".r '-'::.r_‘}\."‘f'-r"f AT ST et BT ey "‘(.P‘ >
) RANA MM A h 2 n B Pl B By Ay N A XA N Aa X a R, R N n

0

-

LY
L)

NG

S LA L L,
SN

A

S
[S

ALY GSEN N '
.'A.'.-"'. W ‘

-

- as

"=

o= NSV
=W "f‘,".,;-,'f,‘ A

.4

o

PSS

KLy

&5

'-"1 L)

YDy P
PG

AN C,c.l.n N

5.2 System Interface and Auxiliary Routines

fer. Within the scrolled output area on the console, on the
printer, and in the buffer, positioning is only possible with-
in the current output line. In the non-scrolled area of the
console CRT terminal, every position on the screen can be ar-
bitrarily accessed. These features uncouple the position
where output is displayed from the order in which it was gene-
rated.

The parameters <line> and <column> permit the random address-
ing of output screen or line locations. <format> controls the
conversion which has to be performed by OUTDTX. The <line>
and <column> parameters and the numeric extensions of <format>
must be unsigned integer numbers. Any value is permitted (as
far as there are no limits imposed by the corresponding func-
tion); the submitted value is treated modulo(128). Leading
spaces or zeros are ignored. The parameters must be separated
by commas. Using a string as a parameter of the output rou-
tine calls implies that the location of an output on the CRT
screen is basically fixed. A dynamic addressing which permits
the calculation of the output location by the application rou-
tine can be accomplished with the CHARACTER*16 function FRCSTR
with appropriate parameters as <control string> (compare chap-
ter 5.2.2.5).

* <]line>

The meaning of this parameter depends on the output device
chosen:

(a) CRT output in split-screen mode:

<line> indicates the line in which the output generated by
OUTDTX is to be placed. Any value between 1 and the maximum
number of lines on the console CRT screen (which must be
specified at program configuration time) is interpreted as a
line number. Two (ranges of) values of <line> have a special
meaning to OUTDTX: a zero value indicates that the output
generated by OUTDTX is to be placed into the current output
line of the scrolled area on the screen, without sending this
line to the console. This permits building an output line by
repeated output requests with <line> equal to zero. Any value
of <line> greater than the number of lines on the CRT screen
puts the output into the current output line of the scroll
buffer, too, but transfers this line immediately to the con-
sole.

- 183 -

'J'.F'f‘;fif‘l'f.; ';’UH"I‘" f~".") "5-.';.'}“) ‘.l‘ [\r“l‘xui’ P Y - A
-8 Wl Ty¥ Ta¥ TV WY e (] A A .

L,

A AT n
[) ‘0 ‘q 'I C\ l‘v y \ 'u.:.' .! :‘!'0'!“‘- ".":'o"'t‘\‘c "!.:

N -

"\';

l.'.
.
5)

- 0 -1 :
AT s ®r.; .
o WA < < SR

AL B

&

RN

Aoy
KA RN L

@

7
e AL

St
ARARR]

Sl

o1 @
":.H_‘.‘

5.2 System Interface and Auxiliary Routines
(b) CRT output in completely scrolled mode:

In completely scrolled mode, three output functions can be
selected with the <line> parameter:

<line> = 0: Output is built in the output buffer but the
buffer is not yet transmitted to the Terminal Handler.

<line> = 1: The contents of the output buffer (including the
items added by the output call with <line> set to 1) are
output on the CRT consocle. No Carriage Return - Line Feed
pair is appended. This switch permits, for example, to
write an input prompt to the console which is to be con-
tinued by user-supplied input.

<line> > 1: A CR-LF pair is appended to the line built in the
buffer, and the line is output. The output buffer of
OUTDTX is cleared after each output operation.

(c) Printer output:

For printer output, any <line> value other than zero will make
OUTDTX print the printer output buffer after having added the
output item passed with this call. A zero <line> value p- -
mits - similar to the console routines - the collection of
data in the printer buffer without printing the line. There
is no option comparable to <line> = 1 for the printer, though.
Note that the scroll buffer and the printer buffer are auto-
matically cleared after having been dumped to the output
device.

(d) Buffer output:

A zero <line> value makes OUTDTX perform the proper conver-
sion, and deposit the ASCII string obtained from the conver-
sion routines within the buffer. A non-zero <line> value
makes, in addition, OUTDTX append a CR-LF pair immediately
after the last item output. (Note that this might lead to
problems if an output line is not built in the user-supplied
buffer in a conventional "from left to right" mode but by
random positioning of various output items. In this case, a
dummy output can be made to a position after the last output
item in order to place the CR-LF pair correctly.)

* <column>
Similar to <line>, any <column> value between 1 and the maxi-
mum number of characters on a CRT screen line, on the printer,

and in the user-supplied buffer, respectively, is interpreted

- 184 -

T O T 'JE, N AT A0 0,0 8,01 ' M W P O,
" S oo l.o.t.‘::"-:'fu.‘!o.‘,,-!‘fo.ﬂ-f"~."::"-:‘5:’3-. LA L MO SN IR AL SIS Y e ettty

-1y
.

5y

"S

o

P

e

\

o,
450

C o
)

Vi

~ 1B

5.2 ©System Interface and Auxiliary Routines

as the start position of the output string requested. (The
CRT and printer line lengths have to be specified within a
configuraticn module; the usable user-supplied buffer length
must be placed into the first byte of the buffer array.) This
applies in any output mode. For a zero column value, the new
output is located beginning with the column immediately fol-
lowing the (temporally) last column to which output was writ-
ten in the scrolled area. The use of a zero column value does
not make sense for directly addressed output, it may, still,
prove helpful if a scrolled, printer, or buffer output line
has to be built. However, absolute and relative addressing
should not be mixed under any circumstances. An output re-
quest with a zero column value, following absolutely addressed
output to locations at the left end of the line, might over-
write other output located to the right of its start column.
Using the relative addressing (with the zero column value) is
recommended if independent blocks have to be closely packed
within a line and if their chronological order should be
maintained. On the other hand, tables should be generated
with absolute addressing.

Special actions are taken if either the start column value
exceeds the permitted line length, or if the output string
starting at this position would exceed it. 1In the first, for
buffer output also in the second case, an "OQUTPUT ERROR"
message is sent to the scrolled block, and the output request
is ignored. The treatment of the second case depends on
whether scrolled or unscrolled output was requested (printer
output is considered as scrolled): In the case of scrolled
output, the contents of the line buffer are sent to the output
device, the buffer is cleared, and the output string is moved
to the left end of the next output 1line. No more printer
output can be written to this second line since it is immedi-
ately sent to the Terminal Handler for output. Otherwise,
output processing is terminated with an "OUTPUT ERROR" mes-
sage.

<format>:

The interpretation of the bytes beginning with the location
specified with <variable> depends on the contents of the <for-
mat> string. Generally, this string consists of one character
(upper- or lowercase) followed by one or two integer numbers
which must be separated from each other by a period. Leading
or trailing spaces are permitted.

REAL variables are rounded to the specified number of digits:;
although any number of digits may be requested, accuracy is
limited to slightly more than seven places. In order to save

- 185 -

LS T PR R AL SR S A - N P eV Tt T NV NG \ x A Y S AL SR UL R R ‘\ ~
R R e NI A A ’ " e

O S L Qs £y

YW"‘V"'W‘]

OIS
o Ll R

i 5.2 System Interface and Auxiliary Routines

i execution time, only nine digits are actually converted; if
(more were specified, the least significant digits are set to
Zzero. The following <format> commands are permitted:

X

Aw: The w (w < 128) bytes following the location specified
with <variable> are interpreted as ASCII characters
and therefore converted to a string with length w.
(Note that non-printable characters are internally
counted like printable characters, which might cause
confusion if two strings are to be fitted together in
separate output requests.)

al IA

P y -
aTo Ty Jo B

-

o B

Ew.d: A (four byte) REAL variable is converted into the
scientific notation format. The total string length
reserved for this variable is w; d indicates the
length of its fractional part. In any case, w must be
greater than (d + 6); otherwise, an "OUTPUT ERROR"
message is generated, and the output request is skip-
ped. The parameter d may be any positive integer,
including zero. The output is right justified in its
reserved area; its general form is sd.ddddEsdd where s
is a sign ("+" is only output in front of the expo-
nent), and d are digits. Positive and negative over-
flow, and indefinite values are indicated by a "+", a
"-", and a "?", respectively, preceding a string of
asterisks in the mantissa area.

-

TLO

P e g
l"n~“'.1.’;.'.;~ o

-~
v

Fw.d: A REAL variable is converted to a floating-point re-
presentation. The output string length reserved is w,
the length of the fractional part, 4. An "OUTPUT
ERROR" message is issued if w is less than (d + 3).
The output is right justified within its reserved
area. Floating-point error conditions are reported as

) above; in addition, a format overflow is indicated by

R a string of asterisks instead of the digits of the

number (see example).

N2

=

Gw: This format is a hybrid between the "E" and the "F"
formats: a REAL variable is converted into a repre-
Y sentation which requires exactly w characters (w must
‘! be greater than 2 lest an "OUTPUT ERROR" is reported).
o The variable is converted to an "F" representation if
| this is possible with the given data space. The
\ length of the fractional part is modified accordingly
® from 0 to (w - 2). If w is less than seven, values
- smaller than the least significant digit of the frac-
. tional string are represented by a string of zeros
o (which applies also to the "F" format). Too large
. numbers are indicated by a "format overflow", a string
- of asterisks. For values of w greater than or equal
®

. - 186 -

J" . - ~ i]
Q ", ODBROGO0O OQOQOOQOLN0 K
T T it MG T S T T et I At s Nt Vg 10t et e, Y

, --_sﬁ
AP P S2 0
Y vr-},/"

5.2 System Interface and Auxiliary Routines

o T

ey

-

to seven, however, the routine changes to scientific
notation (see example), using again all w character
positions.

ry
]

Iw.m: The variable indicated by the routine call parameter
is interpreted as an INTEGER and treated accordingly.
The value w (w > 0) indicates the reserved output
string length, and m is a mode selection parameter. A
format overflow is indicated by w asterisks. The mode
selection parameter represents the type of the INTEGER
variable to be converted; it may assume the following

f

YN

s

PP s e

& values:

N

m=0: Signed two-byte INTEGER*2 (-32768 < I <
q 32767). (In this case, m may be omitted.)
S
'; . m = 1: Signed one-byte INTEGER*1l (-128 < I < 127).
o m = 2: Unsigned two-byte integer (not supported by
] r FORTRAN) (0 £ I < 65535).
f'g m = 3: Unsigned one-byte integer (not supported by
s A FORTRAN) (0 £ I £ 255).
e
b7 The latter two values of m permit the output of in-

teger data generated by assembly language and PL/M
routines rather than FORTRAN.

b~

- Xw: A string of w spaces is output to the console. This
. command can be used in order to clear single lines or
parts of lines. Note that, although no variable is
involved in this operation, a (dummy) <variable>
parameter must be specified which may be a constant or
the name of any variable except a CHARACTER variable
or constant.

T U]

---,,
]
"2
X

ata 273"
a

- Zw: The w/2 bytes indicated by the <variable> parameter
are converted to their hexadecimal representation and

- output as a string of length w. The parameter w must
o T be an even number greater than zero.
3 OUTDTX has an error detection routine which reports an "OUTPUT
:fﬁ ERROR" if an erroneous control string was encountered. Such
w an error can be caused by a missing parameter within the
¢ string or by a parameter which is out of range. Note that the
Lo routine does not distinguish between console, printer, and
. - buffer output errors. The erroneous output request is cancel-
[~ - led. The "OUTPUT" (and "INPUT") "ERROR" .essages are dis-
. played in the scrolled block if a divided screen is used;
i - otherwise, they are simply added to the last output line.
[)
W - 187 -
9 '\--
4 .
' \:
{
Wt
€y
(L

%)

-

N Y T N S O N e N S % I A N Lty B DG AN ALY .
"-.....,... oy Sl \.,’n J'.Fa.r""‘o. ATt T Tk G Kl T Oy .‘ LTt Ol

. 5
WY,

5.2 System Interface and Auxiliary Routines

They are embedded between strings of asterisks and accompanied
by a "beep" signal in order to attract the operator's atten-
tion. An "OUTPUT ERROR" should never occur in a debugged
system; an "INPUT ERROR" may also be caused by (although not
very probable) erroneous operator actions during data entry.

Sample program sequence:

CHARACTER*11 STRING
CHARACTER*16 COMMD
INTEGER*1 K

INTEGER*1 OUTBUF (66)
INTEGER*2 L

OUTBUF (1) = 64

STRING = 'Output line!’

COMMD = '5,40,I5'
X = 3.141592654
Y = 123.456789
K = 99
L = 4321
101 CALL FRDATO ('5,30,F7.2', X)
102 CALL FRSTRO ('0,1', STRING)
103 CALL FRDATO ('5,10,El6.7', Y)
104 CALL FRDATO ('29,0,I3.1', K)
108 CALL FRSTRO ('5,48','This is a sample')
106 CALL FRDATO (COMMD, L)
201 CALL FRDTPR ('0,30,F7.2', X)
202 CALL FRDTPR ('0,10,E16.7', Y)
203 CALL FRSTPR ('0,48','This is a sample!')
204 CALL FRDTPR (COMMD, L)
205 CALL FRSTPR ('0,1', STRING)
206 CALL FRDTPR ('1,0,I3.1', ¥
301 DO 302 I=3,66
302 OUTBUF (I)=#20H
303 CALL FRSTBO ('0,1','And one more sample',6 OUTBUF)
304 CALL FRDTBO ('0,30,G7',X,0UTBUF)
305 CALL FRDTBO ('0,0,F7.0',Y,0UTBUF)
306 CALL FRSTBO ('1,0',' That''s the end.',6 OUTBUF)

The above sequence writes data into the fifth line on the CRT
screen and to the bottom of the scrolled screen area, it
produces two output lines on the printer, and one line of
buffer output. Line 5 on the console screen - as set by
statements 101, 103, 105, and 106 - will read (the left margin
of the output line is at the left margin of the paper):

1.2345679E+02 3.14 4321 This is a sample

- 188 -

T

K

LA
LA

e of

W

‘f_ .{‘ o

. * B
~ ¢

R

LA

-3
3

oif o)

LT 4

A

5.2 System Interface and Auxiliary Routines

The last line of the scrolled portion of the screen will be
output when statement 104 is processed; it will be:

Output line 99

Note that the output in line 5 will appear on the screen
strictly in the order of the pertinent statements. It will,
however, remain on the screen until either part of it is
overwritten by other output or until the screen is cleared.

The output on the printer will consist of two lines which look
exactly like the above two lines. Keep in mind that the se-
quence of the printer output commands cannot be chosen as
freely as in the case of the CRT output. Once a line number
other than zero was encountered, the output line is printed,
and nothing can put any additional output into this line. The
first line in our example will be printed when statement 204
is executed, the second, after statement 206.

The user supplied buffer OUTBUF contains 64 actual buffer
locations; including the two control locations at its beginn-
ing, its total size amounts to 66 bytes. The first byte is
set to the length of the buffer proper (64) in the initializa-
tion sequence. Lines 301 and 302 overwrite the buffer proper
with spaces (#20H). The following lines build an output line
within the buffer which will read:

And one more sample 3.14159 123. That's the end.

A carriage-return - line feed pair is appended at the end of
the above output. The length of the actually used part of the
buffer can be obtained from the second buffer location, in our
case, OUTBUF(2). This location holds the number of the next
byte after the output string. The total length of a string
without a CR-LF is therefore OUTBUF(2) - 1, and OUTBUF(2) + 1
if a CR-LF pair was added.

(The statement numbers in the sample program were introduced
for reference purposes only.)

The following examples show the results of the different

conversion routines for REAL variables (the arrows indicate
the widths of the reserved areas):

- 189 -

LA
L
l‘ ‘. !

\'
o
P
ﬁ;jl 5.2 System Interface and Auxiliary Routines
o E12.4 F12.4 G12 G5
(VARIABLE <-=-=—=—===- > Kmmmmmeeee- > Kemm—emm—ee > <--=>
W 0. 0. 0. 0. 0.
#Q 1.E-20 1.0000E-20 .0000 1.00000E~-20 .0000
q} -1.E-20 -1.0000E-20 -.0000 -1.00000E-20 -.000
}f 1.23456E-6 1.2346E-06 .0000 .00000123456 .0000
{_’\ 3.141592654... 3.1416E+00 3.1416 3.1415926500 3.142
) -3.141592654... -3.1416E+00 -3.1416 -=3.141592650 -3.14
Y 9999.49 9.9995E+03 9999.4900 9999.4900000 9999.
'ﬁc 9999.50 9.9995E+03 9999.5000 9999.5000000 **x%*,
Ny 1.E6 1.0000E+06 1000000.0000 1000000.0000 kkdkx*x,
h%“ -1.E6 =1.0000E+06 **k*kkkk kk**x ~]1000000.000 F*k&*x,
"oy 1.E10 1.0000E+10 **%k*kk*kk xkk* 10000000000, *k**x,
-1.E10 -1.0000E+10 ***kkk*k *kx**x -] QO0000E+10 k%%,
g 1.E20 1.0000E+20 kkkkkdkk ki 1.00000E+20 &k,
:-.':_ pos. overflow +%k_ kkkk +hhkhkkhk kkkk +hkhkhkkkkhkhkk +kkk
.'::.- neg. overflow -k, kkkk —kkhhhkk khkkk —hkkkkkkihkk —-kkk
,jﬁ: indefinite Dk _hhkk Phkdkdhkdh hhkhkk Dhkkkkkkhkk, DhkAk
e emm————— > Kmmmm—————— > Kmmmm—————- > <K===>
Lae
o
.}Q Note: The areas reserved for the output of an item are over-
X A written in any case when the output action is performed, even
J:A if they partly consist of spaces. Although other data may be
i written into these blank regions, this output will be des-
; troyed the next time the previous item is output.
o
y ROUTINE FRDATO:
'3;3 Routine Type: Assembly language subroutine; reentrant.
D) Initialization: FRIOST call.
--J-.p
:}I{ Required Stack: 14 bytes
o
s ROUTINE FRSTRO:
'f. Routine Type: Assembly language subroutine; reentrant.

;.5%5}55
R A
S R LS

ChCal

y L
.

RS
A
.

-.-."_._._'

Pl K

XN

&

1 0% A

P e

»
-
g}

N N N N
A J"lb:»": J'a.- J-

Initialization:

Required Stack:

14 bytes

FRIOST call.

190 -

.
* ’-\
YDA 5.2 System Interface and Auxiliary Routines
"' g ROUTINE FRDTPR:
E Routine Type: Assembly language subroutine; reentrant.
A
:::{ Initialization: FRIOST call.
T
: Required Stack: 14 bytes
t
i
' Y
" ROUTINE FRSTPR:
L)
:. % Routine Type: Assembly language subroutine; reentrant.
[
Initialization: FRIOST call.
- »-’;
> Required Stack: 14 bytes
-
EL
A ROUTINE FRDTBO:
=
Y Routine Type: Assembly language subroutine; reentrant.
My
)\
K Ej Initialization: FRIOST call.
Required Stack: 14 bytes

4 *‘:‘
=

ROUTINE FRSTBO:

B s

LSy

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call.

.
“

Required Stack: 14 bytes

" e N
WYy -
Ay

5.2.2.4_ I/0 Mode Selection and Auxiliary Routines

The following routines permit to select certain features of
the I/0 tasks INDATX and OUTDTX. They may be called at any
time from an application task.

R R a B
L =

e

re-

o 5.2.2.4.1 Input Mode Selection Routine FRINMD

- .

.. This routine permits to specify whether or not an input 1line
- is to be echoed to the scrolled portion of the console screen
- in the split screen mode. This command is, however, ineffec-

v - 191 -

¢ DU N \ OGN AN OIS PR CHERLR ST v s
P UM A N M J’-fi':ft?:?\':“t':.l".'o"fl':ft'» (YR S R X ML DN A DRI O .o!\o?‘.:".a. BNy X .c".-"f:'ﬁ.:?O?t'l.o"

0

vy 5.2 System Interface and Auxiliary Routines
v,

o tive if a completely scrolled screen is being used. Echo out-
(put may also be suppressed for certain input actions if the
.m <flag> value in the FRDATI or FRSTRI call is set accordingly.
4! ROUTINE FRINMD:

an

Cn) .

? Routine Type: Assembly language subroutine; reentrant.

'g Initialization: FRIOST call.
‘] Routine Call:

' CALL FRINMD (flag)

J with: flag: Integer parameter:

z flag = 0: no echo output
o flag <> 0: echo output generated

"

1

ry Required Stack: 14 bytes
o 5.2.2.4.2 Output Mode Selection Routine FROUTM

.
h The routine FROUTM permits to switch between the completely
| scrolled and the split screen modes. For the latter, the
o0 number of the first line of the scrolled part and the number
" of lines within the scrolled part must be specified.

:

o ROUTINE FROUTM:

; Routine Type: Assembly language subroutine; reentrant.

’l

- Initialization: FRIOST call.

J!

‘2 Routine Call:

w CALL FROUTM (line,length)

25 with: line: Number of the first line of the scrolled

3 block (for split screen mode) or zero (for
" completely scrolled screen)

¢ length: Number of lines within the scrolled block
™\ (irrelevant for line = 0)
AN
Em Required Stack: 14 bytes

e
7

H

U - 92 -

' 1

-

'.'

L)

¢

.w

L

ré

p

oy

B P o T T AT A AT AT AT AT AT A e A - LWL LR L > % > o A LR " o} " " 3
) * ’ o ANAAA ».-@! 0 l.l'-.t » A A N ."O- ! 0. B :"I. ':5’-5 l-":t"‘.‘.l-".'..",h By !‘:‘!‘2‘.': 1L S'u.!'

)

L4 ‘f‘
i qt

v - o

Lt 5.2 System Interface and Auxiliary Routines
:,. 5.2.2.4.3 Printer Mode Selection Routine FRPRMD
fa : A call to this routine switches the printer off and on under
L~ software control. 1In addition, switching the printer on with
ol this routine enables the printer output again if it was dis-
T abled because the printer was found inoperable by OUTDTX.

4%

i ROUTINE FRPRMD:
WS °

\"

~ ~ Routine Type: Assembly language subroutine; reentrant.

e o

VRN Initialization: FRIOST call.
20 Routine Call:

>

E i CALL FRPRMD (flag)

ﬁ ﬁ with: flag: Integer parameter:

< = flag = 0: no printer output

flag <> 0: printer output generated

AE LS
'.L_."_.

Required Stack: 14 bytes

¥

,

a B>

~—,
=Y.
:

5.2.2.4.4 Input Prompt Strin electio outine FRINP

v .
LA s

-
Lt
s 2 2 4 L

This routine allows to specify a prompt string which may be
output at the beginning of the input line. This feature per-
mits, for example, to inform the operator about the current

status of the system, e.g., about the current command level,
! and it allows even to explicitly request data. An arbitrary
> string consisting of printable and non-printable characters
_ may be chosen. The string length permitted depends on the
- cursor addressing mode of the console terminal used; for a
- terminal with four byte cursor addressing codes and two byte
relative positioning and line clearing codes, the string
length is limited to 22 characters; longer strings are trun-
cated. In order to delete the prompt string, the value (not
the character!) 0 must be specified as a parameter. (In order
to avoid undue software overhead, FRINPR is not used in the
CGCS.)

oyt

- .IIIL

At

>

-

~a
xr,

e

Note: A FROUTM call clears the input prompt string. In order
’ to set a certain output mode and to specify a (printable)
. input prompt, first the FROUTM call, and afterwards the call
to FRINPR has to be issued!

- e e .
1 WA AP A e 2T W

» - 193 -
)

:ﬁ.}. -

'vfa‘\.',\’\'-m"')\.’ﬁuv"t_.w
D R R SRR et

-~
-

‘g

Yy yxyY

H

l I
* Py

B S lI. .; .I " "

“an -,

s
P e

e
A Y

LA
LN

LRGN e

—

’

Pl

’ .'n 'l"‘l .'l h) :I "J

N

o

-;-._ s

S FL Fah

(Sl » -
Pyl) g
Coved @ L

.
v
~
‘2

s

.......

5.2 System Interface and Auxiliary Routines

ROUTINE FRINPR:
Routine Type: Assembly language subroutine; reentrant.
Initialization: FRIOST call.
Routine call:
CALL FRINPR (character)

with: character: CHARACTER*1l variable or single charac-
ter string holding the new input prompt
character; value 0 (or ASCII NUL charac-
ter) for clearing the input prompt string.

Required Stack: 14 bytes

5.2.2.4.5 Screen Clearing Routine FRCLRO

There are two ways to delete output on a split screen: either
can the screen be cleared line by line, using an "X80" format
(for an 80 character wide screen) in an FRDATO command, or a
single FRCLRO call is performed. The first approach is useful
if only part of the screen is to be erased; in order to blank
the screen completely, however, the FRCLRO call is by far more
efficient. Note: Although FRCLRO erases the output on the
screen, it does not clear the scroll buffer. The contents of
the scrolled block will therefore appear again on the screen
when the next output to the scrolled area is performed. The
only way to clear the scroll buffer is to write blank lines
(one for each scroll block line) to it.

ROUTINE FRCLRO:
Routine Type: Assembly language subroutine; reentrant.
Initialization: FRIOST call.
Routine cCall:
CALL FRCLRO

Required Stack: 14 bytes

- 194 -

AN AT
X H‘\. ol@n"u‘ ‘!‘:‘.t'» . RAA ":

LR
L O

W '\F&'\ ~ \N\ﬁ\'\'\ 4
I\. W N

aon \\-#’i
By e,

NN

Q!

)

Kn -

N~ .

AN 5.2 System Interface and Auxiliary Routines
(.. 5.2.2.4.6 Printer Timeout Setting Routine FRSPTO
! This routine permits to set the printer timeout (in iRMX-80
i:) time units of 50 ms) to a value differing from the one speci-

NI fied at program linkage time. This permits, for example, to
ﬁéhf increase the printer timeout if large amounts of data are to
- be printed and if the printer was already found operable.
v m FRSPTO can be called at any time by any task within the sys-
A ten.

o ROUTINE FRSPTO:

i.r ';'-

Routine Type: Assembly language subroutine; reentrant.
fi;ﬂ Initialization: none.

Sy .
air_ Routine call:

s ’r
e CALL FRSPTO (timeout)

.$§:4 with: timeout: INTEGER*2 variable or constant specifying
o the desired printer timeout in iRMX-80

o time units (50 ms).

[‘ Required Stack: 0 bytes
J,:

o
N :

NS 5.2.2.4.7 Output Mode Change Indicator Function FPRMCHG
Lo
? & , . s . .
> This function must be declared LOGICAL*1 within the calling

. FORTRAN routines. FRMCHG returns a .TRUE. value only when a
ur background system terminated its operations, and when the
- foreground system using OUTDTX routines will probably have to
N clear and restore its screen (compare chapter 3.3.4.2).

v (Background systems can be invoked with "Cntl-C" via the

* Alternative Terminal Handler.) Since there is no background
e system in the CGCS, FRMCHG is not needed there.

.“ ,---
o ROUTINE FRMCHG:
> ‘:.

;A Routine Type: Assembly language subroutine; reentrant: |
: must be declared as LOGICAL*1 in the calling FORTRAN !
-~ program. '
;ij‘ Initialization: none.

"

[

% - 195 -
.I ¢

R~ I'.'

.‘; -

Ko

s

@
X
‘

Y

s

129 7 “P. W ('f\ AT N -(‘.w“'f‘f' SN AT AR - -¢ - A
.'n‘.::. l...... l...!‘.... .’H. :‘"\. J’ N ~* h" ‘((‘ N .(\'\ M0 X e 2O .:"0..0. o8 !".‘c“v.c~.: ,'),.cp.' 0....:‘:90"

\.0

e
ﬁﬁhﬂ

e
R .

*
-""‘ 3
[Ny . A

vi'ay

?

s
S e .
a2 s At

b §

ST, ~

AV

i

Cet N
hARAL
DR

o
PR

Iy ‘.-..;

o~y
[N

TRN Y
e
A

.'."‘.. -
R

L
f. e

N e e
P, R,

5.2 System Interface and Auxiliary Routines
Routine cCall:
boolean = FRMCHG (dummy)

with: boolean: LOGICAL*1 variable (or immediate use of
FRMCHG as parameter, e.g., in logical IF
statements).
dummy: arbitrary variable or constant (no CHARAC-
TER!) .

Required Stack: 0 bytes

5.2.2.5 Control string Building Routine FRCSTR

The control strings for OUTDTX are primarily defined when the
source program containing the output function calls is writ-
ten. In order to permit the definition of these control
strings at runtime, under program control, the CHARACTER*16
function FRCSTR was provided. This function converts two in-
teger parameters and a string (or a previously defined CHARAC-
TER variable) to a string which is accepted by the OUTDTX
routines. Output lines and/or columns may therefore be se-
lected directly by the program software. FRCSTR can advan-
tageously be used as a parameter in an output routine call.

ROUTINE FRCSTR:

Routine Type: Assembly language subroutine; reentrant;
must be declared as a CHARACTER*16 variable in a
FORTRAN program.

Initialization: none
Routine cCall:
character variable = FRCSTR (line,column, format)
with: line: Integer constant or variable, holding the
line number (compare chapter 5.2.2.3).
column: Integer constant or variable, holding the
column number (compare chapter 5.2.2.3).
format: Format string (or CHARACTER variable
holding a format string) (compare chapter
5.2.2.3)

Required Stack: 6 bytes

- 196 -

Lot

> IO ™ P S o e P AR N AT AN A AT AR A A
N R AN i, 7 Py ¥ e DNy g DLy ey

5

L2

s

VA 5.2 System Interface and Auxiliary Routines

f

l? ﬁ 5.2.2.6 Auxiliary Routines

L The following routines do normally not require the program-

o mer's attention. They are subroutines which are called by the

- - I/O0 tasks INDATX or OUTDTX. They may, however, be used by

'R other routines than those contained within the I/O0 libraries.

R Still, their use requires great care as some of them are

L i neither reentrant nor protected.

A,

iv) Six conversion routines are kept in the library FORTIO.LIB.

W The library NOFLOT.LIB provides the hexadecimal and decimal

b integer I/O routines only, and ties away to dummy subroutines

b s the references to the floating point I/0 routines. (This lib-
rary can therefore be used for all applications which do not

LS require floating-point I/0.) All conversion routines were

AN written in assembly language; they can be called by assembly

X~ language routines only since the high speed requirements

;\\J imposed demanded a more efficient parameter passing than

B> >y possible with FORTRAN or PL/M. In the following, only a

o summary of the parameters required for calling them from an

assembly language routine is given. The non-reentrant rou-
tines FXFLIN and FXFLOT must not be shared between the rou-
tines in FIORMX.LIB and any application software. If they are
- required elsewhere within a system which also contains the I/0
- tasks discussed in this chapter, a separate copy of them must
] be supplied. These restrictions do not apply, however, to the
other four routines which are reentrant.

L

-
N

a a_a

Y ROUTINE FRSTHX:

Routine for the conversion of ASCII strings into positive IN-
TEGER*1 variables (modulo (128)).

-
=

Note: D+E point to the character after the next non-blank or
non-digit on return!

A PARAMETERS:
N A ... Result (0)
¢ o C ... Input string counter (remaining string length +
‘ 1) (1I,0)
: ?. D+E . Input string pointer (I,0)
y
) \J

| XN

AT

Y

dAAL.PRAARS TSN P

- 197 -

:'J"l.,

)
|
-
o
td
»
N

- ‘\" - Ly L' o

™ 2 N
'. cl'- 2y .:."c l‘:": 1, v -i‘. ‘-'\':‘I'-'v s‘! O A N A h WA :‘\n'v .

© SRR e v N A N A AT AN N Vo Y
e At 'h " . N '_ N, e, "ﬁ‘-'l':'“m .t.\.o }‘ ", *

5.2 System Interface and Auxiliary Routines

‘u"- L

. ROUTINE FRFXIN:

Routine for the conversion of ASCII strings into INTEGER*2

¥ .
re variliables.
-.\:
'_'{- PARAMETERS:
L. C ... Input string counter (remaining string length +
Y 1) (I,0) .
X D+E . Input string pointer (I,0)
'i: H+L . Result (0)
--_‘
@: On return, D+E point to the first non-digit which follows a
{a digit. The routine requires an error handler module FXIERR.
The corresponding features of INDATX apply.
7
g ROUTINE FXFLIN:
P
{} Routine for the conversion of ASCII strings into REAL vari-
'; ables.
- PARAMETERS :
NO STACK Address for the storage of the result (I)
ﬂ{ C ... Input string counter (remaining string length +
o 1) (I,0)
(- D+E . Input string pointer (I,O0)
-Q: On return, D+E point to the first non-digit which follows a
:@ digit, a sign, or an "E". The routine requires an error
vag handler routine FXIERR. The corresponding features of INDATX
fx: apply.
D)
:;'. ROUTINE FRHXOT:
N,'-
:; Routine for the conversion of a (binary) byte into two bytes
N, of ASCII-coded hexadecimal representation.
¢
LB PARAMETERS:
2. C ... Byte to be converted (I)

Y
!

D+E . Pointer within the output buffer (I,O)

On return, D+E point to the location within the output buffer
which follows the last character converted. The register pair
H+L is not used by the routine.

n}’;ﬁﬁﬁtﬁﬂ

LULAASNS

- 198 -~

Py
LAL DY

‘l

an

—— s
«

NSOy
T r A

R

v

D P Ll

ﬁ 5.2 System Interface and Auxiliary Routines
L~ ROUTINE FRFXOT:
LR
9 Routine for the conversion of INTEGER*1 or INTEGER#*2 variables
into ASCII strings.

r,

"
& & PARAMETERS :
'5 STACK Address of the integer which is to be converted
! (1)
W ﬂ STACK Start address of the output string (I)

t C ... Mode: (I)

0 ... Signed two-byte integer (INTEGER*2)

'SIN 1 ... Signed one-byte integer (INTEGER*1)
e % 2 ... Unsigned two-byte integer

3 ... Unsigned one-byte integer

B E ... Length of the output string (I)
" '\:
7: - The features discussed for OUTDTX apply analogously.
R
i ROUTINE FXFLOT:
}fﬁ- Routine for the conversion of REAL variables into ASCII
‘A strings.
LS
e PARAMETERS:
; ﬁ B+C . Start address of a 7 byte control area in memo-
‘ \ ry:
’ Byte 0-1: Address of the REAL variable to be
oL converted
o Byte 2-3: Start address of the output string
o Byte 4: Format type (ASCII character):
"E" ... Scientific notation
- ! "F" ... Floating-point format
1R "G" ... Hybrid format

Byte 5: Output string length
Byte 6: Fractional part length

»

(Bl Tub Wi i e W
»

The features discussed for OUTDTX apply analogously.

N
3 N
Y 5.2.2.7 ISIS-I1 and RXISIS-II Versions of the I/0 Routines
“ _.';
2 ﬁ Three libraries, FIOQOISS.LIB, FIORXI.LIB, and FIORXR.LIB, are
4 provided in addition to the "standard" FIORMX.LIB library to
- " permit the execution of the above I/0 routines under ISIS-II
pe and under RXISIS-II. They are, accordingly, used by the ISIS-
o IT or RXISIS-II-based auxiliary routines which support the
'j CGCS, e.g., by the Macro Command Editor COMMED. In general,
S the properties of the iRMX-80 routines are reduplicated within
‘.
i - 199 -
B

I.-.
i
Ky
. "_

I AN M AT S R] T e e A R A o A 0 3 Ol
Chdry - i Rl . » . - »

A S J
13 3,00, A F 0,00 M TH, I, N 24 9,800, 0% 0%, B D R -‘0 .00.':." ..C‘..l.'

L4
e g

« ".\' . '-.’kl

.
.

RN
a3

... PR
atatate PLIPA I

o,
a4

el Sl g S S
AL LA J.}

el

A

~

oD ,
;')‘.- '_."‘;

-

O AR

-

T @A @28,

"
X3

.....

.y e

Tat Ak L ate " e SN as Fadad lgt ol ath alh adh Ao 8 ol AfBal AR el Ral Sal Sal

5.2 System Interface and Auxiliary Routines

the ISIS-II and RXISIS-II versions, with the exception of some
genuine real-time functions. There are two different versions
for an RXISIS-II environment: The routines in FIORXR.LIB be-
have like the ISIS-II routines in FIOISS.LIB, while the rou-
tines in FIORXI.LIB essentially reduplicate the features of
the iRMX-80 routines in FIORMX.LIB. The following table shows
the major differences between the four libraries:

LIBRARY FIORMX FIORXI FIORXR FIOISS
environment iRMX-80 RXISIS-II ISIS-II
ROM vsn dependence YES NO
initialization FRIOST FRINIO
input prompt 0 - 22 CHARACTERS 0 - 1 CHARACTER
printer timeout YES NO
FRSPTO YES NO
FRMCHG YES NO
exit at CNTL-Z NO YES

The following essential differences apply:

* The ISIS-II and RXISIS-II routines must be initialized by
a call to the subroutine FRINIO which does not take any
parameters. The FRIOST call of the iRMX-80 routines is,
in contrast, not required.

* There is no timeout for the printer under ISIS-II or
RXISIS-II. Programs will "freeze" if printer output is
requested while the printer is not ready. No error
message is generated in this case either.

* There is no restriction as to the line editing features
of ISIS-II or RXISIS-II. In particular, all control
characters of the Alternative Terminal Handler are avail-
able under both RXISIS-II library versions; there is,
however, no Output Mode Change Detection (routine FRMCHG)
in FIORXR.LIB. With the FIOISS.LIB and FIORXR.LIB rou-
tines, the use of the Cntl-R and Cntl-X commands should
be avoided if the input echo line exceeds one line on the
CRT. Using these commands in this case will mess up the
display. Note that "Escape" does not delete the input

- 200 -

Ll

L AL,

WS CY h

e DO
-

N\

j: w 5.2 System Interface and Auxiliary Routines
D)

! line display on the CRT screen although it deletes the
(E contents of the input line. With all libraries except
¥ FIORMX.LIB, the entry of Cntl-Z terminates the execution
ﬂ of a program. An appropriate sign-off message is provid-
R S; ed by the I/O routines.

" In contrast to the iRMX-80 or RXISIS-II based I/O routines
X m which use the cursor positioning routine of the Alternative
- Terminal Handler, a cursor positioning routine must be spe-
e, cially provided for the ISIS~-II based routines. The standard

cursor positioning routine uses a step-by-step motion of the
cursor in order to position it to the current output position.
A Although this is the only approach which is compatible with

most terminals (including the old older versions of Intellec
v development systems), it is not optimal as it requires 1long
ﬁ' output times as well as a large buffer. If the terminal used
b has the capability of direct cursor motion, an alternative
! FRPSCR routine should be used. This routine should be linked
in prior to FIOISS.LIB when the software is configured. An
alternative FRPSCR routine can be designed according to the
) rules given in chapter 3.3.4.1.7 for the cursor positioning
. routine of the Alternative Terminal Handler. Defining an
g alternative cursor positioning routine will usually not affect
the stack requirements of the I/O tasks. (More than 100 bytes
of the stack of OUTDTI are not used at the time of the FRPSCR
call, and any such routine is not likely to require more than
a small fraction of this available stack area).

A

-y
[

ﬂ‘_
A
4 Ly

-
A

1 In order to fully utilize the advantages of an alternative
FRPSCR routine, the parameters which are normally kept in the
module FXTISS (which would have to be changed anyhow if a
console terminal other than an Intel system is used) should
. also be declared PUBLIC by this routine (compare chapter
5.2.2.8). While all parameters in FXTISS can be changed in a
.. rather straightforward way, some considerations should be
applied to the length of the transfer buffer FOTRBF as the
size of this buffer can be considerably reduced if a terminal
with direct cursor addressing is used. Its length can be
calculated as follows:

- . -
.
‘1'

-,
o -
BN

‘v'l'l]
3K

MAX. LENGTH OF THE CURSOR POSITIONING STRING +

CRT SCREEN WIDTH (CHARACTERS PER LINE) +

CURSOR POSITIONING STRING (FOR LAST LINE, COLUMN 1) +
(24 * NUMBER OF LINES IN THE INPUT AREA) - 1 +

w s a2l AT

ey

'ﬁ LENGTH OF THE INPUT BUFFER OF THE TERM. HANDLER (122)
s

<

f\

I

«f

. - 201 -
R 2

N oo

D)

L

‘-'-‘n-

-y
RNt RN N

) "‘*}‘}“}“;‘}‘}*}’} <o a‘a”f“a‘r*f ¢ f\f5¢~*' ‘r‘ ‘a ot a‘a‘ ‘)‘;‘a‘

oy 5.2 System Interface and Auxiliary Routines

5.2.2.8 confiquration Constants Used by the I/O Routines

The strong dependence of the I/O routines on the hardware on
which they are executed prevented their completely straight-
forward insertion into the application code. Several data
modules are required for all environments. Standard data
which apply to an Intellec development system are kept in
| library modules in FIOISS.LIB and will be inserted into the
- final code unless different data are explicitly linked in in
.Y front of the library files. A similar approach is used for
- the iRMX-80 and RXISIS-II based routines. While the general
. features of program linkage will be discussed in chapter 6 of
- this documentation, the special data files dedicated to the
I/0 programs are presented below. The following table lists
all PUBLIC variables required by the I/O routines and, if ap-

. plicable, their default values. A "D" in the column "Default
- Value" indicates that memory locations in the data segment are
<. assigned to the particular PUBLIC label (via a "DS" assembler
- directive) rather than a value (with a "SET" or "EQU" direc-
Nod tive). The first two PUBLIC variables shown in the table are,
o for example, defined by means of the assembly language code
- sequence:
P PUBLIC FOIBFL,FOIBUF
- FOIBFL SET 80
' DSEG
¢ FOIBUF: DS FOIBFL

END

o Note that all PUBLIC variables within a module must be speci-

o fied in an alternative module. The following source files

(- which contain one parameter module each may be modified in
order to provide alternative modules:

-

-
r$ MODULE FIORMX.LIB FIORXI.LIB FIORXR.LIB FIOISS.LIB
SN

N
:“; FXCONF FXCRMX.SRC FXCRXI.SRC FXCRXR.SRC FXCISS.SRC
N FXOFST FXOFST.SRC - - -

! FXTERM FXTRMX.SRC FXTRXI.SRC FXTRXR.SRC FXTISS.SRC
rﬁ FXPRDT FXPRMX.SRC FXPRXI.SRC FXPRXR.SRC FXPISS.SRC
ﬁf
-
S MODULE VARIABLE DEFAULT MEANING
)

@ FXCONF FOIBFL 80/122 Input buffer length @)
" FOIBUF D Input buffer with length FOIBFL
;ﬁ FXOFST FOOFST 18 Offset value depending on the FOR-
. TRAN floating-point routines (see
-7 5.2.2.1) *)

@

- - 202 -
b

o,

-

2
'.

L
‘&S
YN

N

'I';l

I
A AT,
B ;". Y

%5

e |

e

o 2

| _

N N gt

A

Ll el Bal Sad §4 v'lu'w

5.2 System Interface and Auxiliary Routines

FXTERM FOLINC 24/25 Number of console output lines @)

FOCOLC 80 Number of output columns on the CRT
FOMXSC 8 Maximum number of scrolled lines in
split-screen mode

FOINLC 3 Number of lines in input area

FOCURU 1B41H Cursor up (Esc-A) #)
FOCURD 1B42H Cursor down (Esc-B) #)
FOCURL 1B44H cursor left (Esc-D) #)
FOCURR 1B43H Cursor right (Esc-C) #)
FOCURH 1B48H Cursor home (Esc-H) #)
FOCLRS 1B45H Clear screen (Esc-E) #)
FOCLRL 1B4BH Clear line (Esc=K) #)
FOLMIC FOLINC-FOINLC

FODMYS (FOINLC-1) *#24

FOTRBF D Transfer buffer +)

FOOBUF D Line output buffer, length FOCOLC

FOSBUF D Scroll buffer, length FOCOLC*FOMXSC

FOCRBF D Auxiliary array, length FOMXSC*3
FXPRDT FOPRBL 120 Printer buffer length

FOPRBF D Printer buffer, length 2*FOPRBL

FOPRTO *) 40 Printer timeout (in RMX time units)

FOPRTM *) 10 Number of "Printer not ready" mssgs

@) RMX-80 AND RXISIS-II / ISIS-II
*) FIORMX.LIB only
#) FIOISS.LIB only

+) Length of FOTRBF:
iRMX-80 AND RXISIS-II:
8+FOCOLC

ISIS-II: 2% (2+ (FOLINC-1)+FOCOLC) + 2*(1+(FOLINC=-2))+
FOINLC*24-1 + FOIBFL
(cursor pos. + output) + (input area prep.)
+ (inp. echo)

5.2.2.9 CGCS-8pecific I/0 Routines

The specific operation of a process control system like the
CGCS requires that some output items, in particular, the
entire dialogue between the operator and the system, should
also be recorded for documentation purposes either on the
printer, or on a disk file. A special set of interface rou-
tines was therefore specially prepared for the CGCS which can
be called by any task which requires input or generates out-
put, namely, STRIN and DATIN for the input of data to vari-

- 203 -

5.2 System Interface and Auxiliary Routines

TA AL

ables of type CHARACTER and of any other type, respectively,
and STROUT and DATOUT for the corresponding output operations.

The input routines DATIN and STRIN echo the entire input line
to the documentation output, while the output routines DATOUT
DAL and STROUT write simultaneously to the screen and to the

*C documentation output. 1In either case, each documentation

\ output line is preceded by the actual and the internal system
time of its generation. The documentation routines format
their output into pages of 56 lines each; each page is headed
by a line which holds the run's date, a run identification,
and a page number.

- o P
P LS

T
<
2

The CGCS-specific I/O routines are based on the corresponding
routines in FIORMX.LIB, and have to be called essentially with
the same parameters hence. DATIN and STRIN may be called only
when a new line is actually requested from the Terminal Hand-
ler; the <flag byte> for these calls must, however, have bit 1
rather than bit 0 set (compare chapter 5.2.2.2.1). (DATIN and
STRIN read the entire input line into a buffer which is copied
to the documentation output, and subsequently vector control
to FRDATI and FRSTRI, respectively. Since the input line has
already been read into the interface routines' input buffer,
FRDATI or FRSTRI have to re-scan the line rather than request-
ing a new one from the Terminal Handler.)

s,
fheh

T4 ngg(s’?

Pd
VN@

Y

Ld

_,..
A

PR

The CGCS-specific routines are not reentrant; critical parts
of them must therefore be protected by a software interlock
" which must be initialized with a call to the routine INIPRT
o before any task requests access. INIPRT is called (without

parameters) from the initialization routine FXUSIN (compare

3

pa chapter 5.3.1.3).

) P)

e While there is only one task (namely, the Command Interpreter)
L which requests input from the console, there are several tasks
1?{ in the CGCS which create output which ought to be routed to
;f} the printer or to the Documentation file. This prohibits the
rd use of some of the output buffering features built into FRDATO
@ and FRSTRO; it is not possible to collect items within the
5 output routines which are to be written to one line in the
' i scrolled portion of the console screen, since another task
" which generates output while a line is being built wculd obvi-
A ously interfere with the data already in the buffer. All
Y lines to be written to the scrolled area which could not be

o, generated in a single output command have therefore to be con-
Qa structed in a buffer with the buffer output routines: only

n when the line image in the buffer has been completed, it may

be output with DATOUT. (Since each task can own a private

! output buffer, there is no danger of interference any more.)
’.
an 204
R
"
:" 0

8

o

T N TCEA AN A N P NS Vs) ‘,%"» 3‘-\. SN \'-*-\\\ " p R R SO WY up * e
)'("""'\’\"’"" ol o S B At "’)‘ s t..-u"-. AA SRR S S

(-
-
RN 5.2 System Interface and Auxiliary Routinec
% The peculiarities of a real-time process control system re-
E quire an extremely high degree of fault tolerance, particu-

larly for the I/0 routines. The failure of a peripheral (and,
possibly, only auxiliary) device like a printer must by no
N means permanently detain the operation of the remainder of the
o system. Therefore, a printer timeout feature was provided
X, which discards printer output if the printer did not respond
v) within a given period (currently, 10 seconds); after three

" unsuccessful attempts to write to the printer, printer output
is disabled altogether. (A corresponding error message is
displayed on the CRT console.) Printer output can be activ-
ated (or, re-activated) with a call to the subroutine STARTP.

-
¢

O
-Tl.{%‘ '-‘ 'l(‘l"j

-. .' -' .

s ¢ a @ :-
YAy

&
i_"‘.‘-

- 205 -

‘lS ll' l.

4
.
R
“~

S A Y ST T
P S - «ff)"‘f
Y, ..-.a,- $'-‘0 AN

- LTS LS
. oy '

LG

@* .'\ .

P

e 1

Jaa
?’l }

227

28

S i - = -
Ca !‘/ LA
‘-“v.‘x_r“v)‘-'.r

IS ~”
~ﬂﬁ£35§&\J

[d

Y v
{¥." -..' . %

SRS

K

-
}}L’\{J . &{‘-

g
AL

TN
TR,

-

= Nl ale At ava S 4 B" YWIELIY RPTIRyTeg Ty Y7 - W oY R hat AT Ae A= b= ohh oid

5.2 System Interface and Auxiliar: Routines

5.2.3 Disk Interface Routines - Libraries FXDISK.LIB and
FXDSKI.LIB

The following routines permit the use of basic disk functions
by a FORTRAN program without involving the tremendous code
overhead imposed by the standard FORTRAN routines. While
FXDISK.LIB contains a version for a genuine iRMX-80 environ-
ment, the routines in FXDSKI.LIB can be executed under ISIS-II
or RXISIS-II. Both versions behave identically with regard to
their programming interfaces.

NAME TYPE FUNCTION CHAPTER
FROPEN subr disk file opening routine 5.2.3.1
FRREAD subr read data from disk file 5.2.3.2
FRWRTE subr write data to disk file 5.2.3.3
FRSEEK subr perform SEEK operation 5.2.3.4
FRCLSE subr disk file closing routine 5.2.3.5
FRLOAD subr load code from disk file 5.2.3.6
FRATTR subr disk file attribute setting 5.2.3.7

FRDELT subr disk file deleting routine
FRRNME subr disk file renaming routine

FREXIT subr exit to operating system 5.2.3.8

FRDSTA func check the status of a disk I/0 5.2.3.9
operation

FXDSKE subr disk error message generation 5.2.3.10

In contrast to the console and printer I/O routines, the disk
I/0 operations are confined to an unconverted transfer of
strings or binary data. This approach results in a higher
transfer speed and in reduced disk space requirements. If
necessary, conversions to ASCII can be carried out with the
Buffer Output or Input routines described in chapter 5.2.2
prior to a disk file output or after the input from a disk
file.

File access for the READ/WRITE/SEEK/CLOSE operations is con-
trolled by a file number which can be freely assigned (as an

- 206 -

vr:’&’f_:r;'r 7.

Lath A4l

MNND
9
N
gi:{ 5.2 System Interface and Auxiliary Routines
WS
;Df INTEGER*1) with the FROPEN call. All further operations refer
(ﬁ to the file only by means of the file number. The file name
-7 specified with the FROPEN call may define a genuine disk file
M (in the standard ISIS-II notation), or one of the I/O devices
AR supported by the current operating system. Any valid ISIS-II
e - device may thus be used in an ISIS-II environment; under
e iRMX-80 (with the Alternative Terminal Handler installed) and
) 7 RXISIS-II, the a restricted range of devices is supported
o (compare chapters 3.4.1.1 and 5.2.3.1). In the iRMX-80-based
T version (FXDISK.LIB), there is no restriction (except the
- memory available) to the number of concurrently open files if
‘j;.; the buffers required by the Disk File System are built in
2o o memory supplied by the Free Space Manager. (It is possible to

specify in the iRMX-80 Configuration Module whether Free Space
Manager supplied or fixed memory locations are to be used for
the disk file buffers.) In contrast, the number of concur-
rently open files is limited to six with the ISIS-II/RXISIS-II
. version (FXDSKI.LIB). Any valid INTEGER*1 value (-128 to 127)
. may be used as a file number; all concurrently open files
must, of course, have different file numbers. (The use of
negative file numbers is, however, not recommended. The
Console Input routines described in chapter 5.2.4.2 use file
number -1 which should therefore not be used otherwise.)

e
A
“ e

:’ -“ n‘.“ N
LA
¥

N
PUI RS

) While the ISIS-II/RXISIS-II version of the Disk Interface Rou-
E’ tines (FXDSKI.LIB) is a relatively simple subroutine interface
to the corresponding ISIS-II system routines (or to the ISIS-

« .‘ v\ -\'
N

IT emulation within RXISIS-II), the iRMX-80-based routines in

T
(s ¥

:f - FXDISK.LIB are considerably more elaborate in order to main-
YO tain the full real-time facilities of iRMX-80: Similar to the

- I/0 software covered by the preceding chapter, the disk inter-

9]) face software consists of one central task (FXDISK) which
o !, receives messages from small subroutines which are called by

L&l“ the user FORTRAN program. It advances, in turn, messages to
Y the iRMX-80 Disk File System. The message transfer between
. oot FXDISK and the subroutines which are called by the user task

ﬁﬁ w is essentially identical to the approach used for the I/O
“ system, and the (physically) same message locations are used.
’\ o~ This does not impose any disadvantage as a user task may only
A perform console or disk I/0 at a given time. Any user task
NN which executes any kind of disk access via FXDISK must there-
DA fore be initialized by an FRIOST call prior to any disk rou-

SO tine call. The same considerations about the task configura-
el tion apply as specified in chapter 5.2.2.1, particularly with
t; regard to the "extra'" bytes following the task descriptor.

'- f;\’ -

?{:j FXDISK requests the appropriate operations from the Disk File

s System, using the (modified) user task supplied request mes-
'?:_ sage, and can subsequently handle the next disk I/O0 request
;} g issued by another task. An auxiliary task receives the Disk
”

,:§ _ - 207 -

N

52: -

o,

.) .

:—:\. -

o

I

~

" L T o T T O T e T S N S S I e TP T TSP B e S L S RO AT L
:-f:'u'h a\:;}l{_.rnﬁ . MOt Sure N o~ ' , , ad)

AL Bl T S Y AN B e, B "R ae T S

5.2 System Interface and Auxiliary Routines

File System responses and releases the request messages to
their source tasks. I/0 requests are thus "pipelined" through
FXDISK, the appropriate Disk File System task, and the auxili-
e ary response task, which implies that several requests may be
o handled in parallel. The full real-time capabilities of the
- Disk File System are therefore maintained by the Disk Inter-
face routines. The user task which has requested a disk
operation is kept waiting until the operation has been ter-
y minated. This is essential as the task may neither be allowed
- to change data locations before or while their contents are
A written to disk, nor to contirue its processing without know-
~ ing the results of the disk operation. This fact excludes, of
N course, high-speed tasks or tasks with a critical timing from
disk operations.

o Under 1iRMX-80, FXDISK maintains a 16 byte control block for
= each open file which contains the number of the file, its
o name, the address of the entry exchange supplied by the Disk
" File System for the particular file, and two auxiliary bytes
< which contain the link information to the next control block.
These internal control structures are built of Free Space
Manager memory.

< In either version - FXDISK.LIB and FXDSKI.LIB -, FXDISK re-~
e turns a two-byte "status" value which must be interpreted by
- the user task. No error check - except those which are re-
guired for the internal operations of FXDISK - is performed,
e and no error message output is generated on the console. This
e was done on purpose as some applications might involve delib-
Tt erate disk errors which should not confuse the output on the
- console. The responsibility for the interpretation of the
e "status" word remains fully with the application program.
Generally, no further disk I/0 action should be performed by
N the calling task until the result of the preceding disk access
XN was checked. A reentrant interface routine - FRDSTA - which
must be declared as a LOGICAL*1 function in FORTRAN makes the
interpretation of the "status" word easier, and the routine
FXDSKE provides an error message on the console unless the
avplication takes error handling actions of its own. (FXDSKE
generates only an error message; it does not off-load the
calling task from providing some kind of error routine to
which it can branch in the case of a disk error.)

aleleels
AT

o
]

LR B]
@IS

.
.

D)

.
PN

¢ iy
LA A
U

Ry

- 208 -

@

Y

Fd
ol ol

W TWaNY fnl Sl haad A0 Y0 A% 0 bat ASa At tal YAl Sl Ralh Rl Bal BB S AC A r A A A% AR oSl ol ol ol ohit,

b

.

A .{_‘

LA

5;151 5.2 System Interface and Auxiliary Routines
~

~ . TASK NAME: FXDISK
{ ﬂ ENTRY POINT: FXDISK

,mf“ STACK LENGTH: 38 bytes

N PRIORITY: higher than all tasks requesting disk
DY operations

e DEFAULT EXCH.: none

' EXTRA: 0

\

o E‘ INITIAL EXCH.: FXDSKX

i

T 5.2.3.1 Disk File Opening - Routine FROPEN

‘}, RN Prior to any access to a disk file, this file has to be opened
RN by means of a call to the subroutine FROPEN. This call must
T contain an arbitrary but exclusive INTEGER*1 file number which
o will also be used in order to identify the file in all future
SRS accesses, its file name (in ISIS-II format), and an access
~ parameter which defines the type of file access. The access
i parameter is an INTEGER number which may assume the values 1,
e 2, or 3, corresponding to opening for reading, writing, and
O updating (reading and writing), respectively. Under iRMX-80,
o a file may be opened for reading under more than one (dif-
o ferent) file numbers; still, it may be opened only once for

writing or updating. (Under ISIS-II, a disk file may be open-
ed only once for any access type.) The file name specified

p—y,
;-

.Nﬁ with the FROPEN call may correspond to a genuine disk file, or

:tt PO to any device supported by the resident operating system. All

\2 > ISIS-II devices are supported under ISIS-II; under RXISIS-II

‘: and iRMX-80 (with the Alternative Terminal Handler), the fol-

pls ' lowing devices are supported:

5:§ " :CI: ... Console Input

) :VI: ... Conscle Input

Y :CO: ... Console Output

e tVO: ... Console Output

< :LP: ... Line Printer

. :TO: ... Line Printer

< :BB: ... Byte Bucket

:; The Byte Bucket is a dummy device which, as an output device,

" simply ignores output data. If the Byte Bucket is used as an

o input device, it returns an empty string (with length zero).

é; :CI: and :VI: may be opened for input only, all other devices

L (except :BB:), for output only.

Z{}'- FROPEN returns an INTEGER*2 value which indicates the file

;e status; a zero value corresponds to a successfully fulfilled

. : file opening request, while other values indicate some kind of

0.

Pl - 209 -

Lo

oy

[

NARY :
o |
R A o e e o o TN T T e T N S S

2 .
25
5 %N

9
7
o
AN 5.2 System Interface and Auxiliary Routines
»
o
R .
,¥ig) a disk error (compare chapters 5.2.3.9 and 5.2.3.10, and

Appendix 4).

e

Lo

.

:.-::. ROUTINE FROPEN:
- Routine Type: Assembly language subroutine; reentrant.
)
i Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
N only) .

St Yy

oY
Qi} Routine Call:

N

CALL FROPEN (filenumber, filename, access, status)

L
,fﬁ with: filenumber: Arbitrary INTEGER*1 number, dedicated
L(; to the corresponding file.
B filename: Filename, corresponding to ISIS rules.
i. access: Integer parameter:

® 1 ... opened for reading
b, 2 ... opened for writing
R 3 ... opened for updating
R status: Error status parameter (zero for faultless
3N operation, non-zero in the case of an
B error); compare 5.2.3.10.
{
i_* Required Stack: 14 bytes.
2
D F_'-.
oo
‘e 5.2.3.2 Reading From a Disk File - Routine FRREAD
; Each call of this routine transfers a number of bytes to
-ﬁﬁ locations in memory whose start address and count have to be
vy given as parameters. The routine returns the number of the
A bytes actually read which is usually identical to the re-
&H‘ quested length unless the end of the disk file or a disk error
OV were encountered. Since the end of file is not reported with
}! a non-zero status value, the "actual" value should be checked
;;@ by the application software, in addition to the "status"
e parameter. Similar to FROPEN, a two-byte status parameter is
Bt used to indicate possible errors.

.
ey
* '_n,'
1 ':I"-
N

“»
o
o
L; - 210 -
fﬂ‘:l
A
X

®
"
”"~ ; 1 v 2 my "o A4’ o' iy L \] | el OO
:‘l \"J’ ei.‘"i. Ol_, Xy n'!'!‘!.' b Y .la'v“ Ko o'!".i:‘,:.»...%’. 3 e .t‘l . .o'l!o ,!".",0'..0..".:"2\ LX) :0. A |"| : ‘f‘: ll.. Y, l‘:'t':'c

R

;.’i

-

L

-; e 5.2 System Interface and Auxiliary Routines
R

e @ ROUTINE FRREAD:

&:- Routine Type: Assembly language subroutine; reentrant.

[

A

S a7 Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
‘o o only).

-

im Routine Call:

CALL FRREAD (filenumber,variable,length,actual, status)

with: filenumber: see 5.2.3.1 (FROPEN)
variable: Start address for the storage of the
data read from the disk file.
length: Number of bytes to be read from
the file.
actual: Number of bytes actually read from the
, file.
e status: see 5.2.3.1 (FROPEN)

Required Stack: 14 bytes.

A A0 PR TR

. <.

i) '-

| s,

K ., 5.2.3.3 Writ o Disk File - Routine FRWRTE

‘ G Each call to this routine transfers a number of bytes from
> memory locations whose start address and count have to be
o (- given as parameters to a disk file indicated by its file
- ?. number.

ROUTINE FRWRTE:

I

Routine Type: Assembly language subroutine; reentrant.

A e s aas

=5

- e s

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

'’ X

x
R

Routine Call:

CALL FRWRTE (filenumber, variable, length, status)

R

%

' -8 with: filenumber: see 5.2.3.1 (FROPEN)

_‘ variable: Start address of the data to be written

S to the disk file.

~ - length: Number of bytes to be written to the file.

N) status: see 5.2.3.1 (FROPEN)

éff Required Stack: 14 bytes.

T\

W - 211 -

3 §§

L

b

e

3 b

. ; A . U TR RN LN SV e Y v-----,-v-n--'«,lli--.
v, v M) ‘ ‘.1 v.n (¥ ~(~$ \ \ .: N\ "‘* ‘ ‘-N\ ' ".0" -'. A M . '.l' \ N C.. !" ' ﬂ.

-

',
l\'
.

»

]
s
“'s
v

¥ s

PEL LS

Wy

:';_A-
L S SO Ry NS Wy N

iy Ny
L

1 o
ks

[N S S

. .
3
»

t:’

by

. .
a L
Y 4 vy

P o

N
“

x

w
.

RN
LR SR ‘-"‘

€ 1

[l g

e

ot @

k%5

3 Ny

LA

2

5h Y

]

]

' "
2@

REARNERE

AR A

@

~

Tata
LI

'.'0.
2.
.

ERRAP A S A

oY
LN N

"

2,

AL Yl 4 S

)

LN

P o L AN ol IR € P a0 I NI N 1 AT AN i e N s
O R e L RO o v iy g R B Mt A 2 S e

5.2 System Interface and Auxiliary Routines

5.2.3.4 Access to Random Files - Routine FRSEEK

The routines FRREAD and FRWRTE permit the input from and the
generation of conventional sequential files. Random disk
files may be handled with these routines, provided that the
file marker (which indicates the position of the block which
is to be read or written within the file) is moved to the
correct position prior to the actual read/write operations.
The file marker can be positioned by means of the routine
FRSEEK. An extensive description of the SEEK function can be
found in the ISIS-II or iRMX-80 User's Guides.

ROUTINE FRSEEK:
Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:

CALL FRSEEK (filenumber,mode,blockno,byteno,status)

with: filenumber: see 5.2.3.1 (FROPEN)

mode: INTEGER*1 parameter:
0 ... return current marker position
1l ... Decrement marker position
2 ... Set marker to new position
3 ... Increment marker position
4 ... Jump to end of file

blockno: file block number (0 ... 4004)

byteno: Byte number within the block
(0 ... 127)

status: see 5.2.3.1 (FROPEN)

Required Stack: 14 bytes.

5.2.3.5 Disk File Closing - Routine FRCLSE

Any access to a disk file must be terminated by closing this
file. Disk files opened under iRMX-80 for writing or updating
which have not been closed properly do not show up in the disk
directory and can therefore no more be accessed. Similar to
all other file accessing routines, FRCLSE references the file
by means of its number; a status value is returned by FRCLSE.

- 212 -

Yt S Wy 2 Uy n
VOLE. T RN

R A A 4

a R,
LX) 0"0 Ly

n

AN
A
:iﬁ‘ﬁ 5.2 System Interface and Auxiliary Routines
B
’*

X ‘ ROUTINE FRCLSE:
;:- " Routine Type: Assembly language subroutine; reentrant.

s

S .

:; < Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
A

o only).

A

. !\ Routine Call:

AT)
o CALL FRCLSE (filenumber, status)
kS with: filenumber: see 5.2.3.1 (FROPEN)
pIh status: see 5.2.3.1 (FROPEN)

!

Required Stack: 14 bytes.

T

hY

0
im § 5.2.3.6 Program Loading - Routine FRLOAD
[}

;: In contrast to the preceding routines which are designed for
Y e handling data disk files or I/0 from/to physical devices, the
Y @ subroutine FRLOAD permits to load program code from disk.

& Under iRMX-80 and RXISIS-II, only genuine disk files may be
j3 . specified with the FRLOAD call; ISIS-II permits also devices
“ i as a source of code loading operations.
A
a\ﬁ FRLOAD loads code into the system's read-write memory without
NN transferring control to this code; its basic function is
AN therefore loading subroutine overlays which are eventually
b~ invoked by the resident program code. It is possible to
) ! specify a bias value with the FRLOAD call which shifts the
e program code to memory locations different from the memory
& area defined during the overlay linkage. The code can usually
jq . not be executed in these shifted locations, still, it can be
. stored there and can be moved later into its correct position.
o FRLOAD does not prevent main program code from being loaded,
i: which is illegal in a genuine multi-tasking environment under
v iRMX-80; still, an error message (a non-zero status value) is
{' § returned if the loaded code was a main program. The applica-

! tion program has to make sure not to access the loaded code in
the case of a disk error.

’u.
S
oy

[y

LY
RN

- 213 -

¥
+

N 8,070,70,1g, Ty, Oy Ty B % WY 0 ettt e Bt S " O R AN
¢ .‘,_’:.“,h"?i"!:", .":E‘ 1 oAN .l..!l:‘..h ,lt'.":"':'!':‘!',‘!'.‘.“A'f’?"‘“0.-'.':"1Q‘?"'?"‘?‘u'.‘h !.l‘?':..‘!‘!‘l‘?‘t.,‘I”h‘?‘l‘!"“"' .i”'-.t'a !‘n‘?‘a‘!‘»‘?‘o h’.’n',‘v‘.‘a‘!’t"‘i‘,‘n KRR

¥
v
)

NS
N
B

SR

I l"l‘

P s

e d

TS
SRR

-

Phal ALY

,i
[P AR A

‘.,--..,,u,,_,._._
A o 2 L7
OV — ARG CLTAO

Pl

Ry

.zﬁ

.':F.
‘\‘.'
L

e e e

i

L
§ ‘r_,'-
\' “n

5.2 System Interface and Auxiliary Routines

ROUTINE FRLOAD:
Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:
CALL FRLOAD (filename, bias, status)

with: filename: Filename, according to ISIS-II rules.
bias: Bias value (INTEGER*2), usually zero
status: Error status parameter (zero for faultless
operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

Required Stack: 14 bytes.

5.2.3.7 Directory Maintenance - Routines FRATTR, FRDELT, and
FRRNME

The above three routines effect the interface to the directory
maintenance functions ATTRIB, DELETE, and RENAME, respective-
ly. They can only be used in conjunction with genuine disk
files, not with I/0 devices.

ROUTINE FRATTR:
Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only).

Routine Call:
CALL FRATTR (filename, control string, status)

with: filename: Filename, according to ISIS-II rules.

cntl string: CHARACTER*2 string with the form
(F|I|S|W}{(0|1}, according to ISIS-II
conventions.

status: Error status parameter (zero for faultless
operation, non-zero in the case of an
error); compare chapter 5.2.3.10 and
Appendix 4.

~ 214 -
P A P AR R B T L T Y DS G S T e e e O A N])
e ot S s e S e g S T A TV T NN

T
O Ty -

5.2 System Interface and Auxiliary Routines

: i‘ Required Stack: 14 bytes.

] ROUTINE FRDELT:

< Routine Type: Assembly language subroutine; reentrant.
'] Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
a i- only).
&
. Routine call:
g CALL FRDELT (filename, status)
O with: filename: Filename, according to ISIS-II rules.
. status: Error status parameter (zero for faultless
. operation, non-zero in the case of an
|:.¢ error): compare chapter 5.2.3.10 and
‘;i Appendix 4.

Required Stack: 14 bytes.

o ROUTINE FRRNME:

Routine Type: Assembly language subroutine; reentrant.

ey,

Initialization: FRIOST call (RMX-80 routines in FXDISK.LIB
only) .

Ay N
e

Routine Call:

x
r

CALL FRRNME (filenameold, filenamenew, status)

- with: filenameold: 0ld filename, according to ISIS-II

: :i rules.
> - filenamenew: New filename, according to ISIS-II
(rules.
X status: Error status parameter (zero for faultless
MY operation, non-zero in the case of an
. error); compare chapter 5.2.3.10 and
. Appendix 4.
b .
o Required Stack: 14 bytes.
L
!
LYY
3 - 215 -
¥ \,:
£
t ’)
o
N B D R T L L N R i B B AR

X
‘5’_‘

N

Shme

o
8t
Y.t

SN N4
P s K &,
27 2%a -

o~ U
s
he " 0.

ﬂﬁﬁ@ﬁﬁ

.'“a -

Ry ;
[N '-‘*. ?-."c.ft. k‘.k'.'s *

--. pop

A5 N
£ .

P (&

Y3

.-
xL 3

Lo
P

APOART Yoot

«
v 5

el

" " A LT I - o "' ‘-‘. *’\'.\r\r o, ".-“ .'J'.' \(\" f$f
'.a.l.._‘l'.!'.-,\él.o ",‘n'. .:‘!'. UMM !‘!»"’ AU e e O OO0 .'.\' M)

5.2 System Interface and Auxiliary Routines
5.2.3.8 Exit to Operating System - Routine FREXIT

The routine FREXIT should be used in order to terminate the
operation of the current program or real-time system. Upon
call to FREXIT, all open files are closed, and control is vec-
tored to the resident system, i.a., to ISIS~II or RXISIS-II if
the routines in FXDSKI.LIB are used, or to an appropriate in-
itialization of iRMX-80 for FXDISK.LIB. (In fact, a routine
RAEXIT is called in the latter case. The default REEXIT rou-
tine provided in an RXISIS-II based environment will re-boot
RXISIS-II.)

ROUTINE FREXIT:

Routine Type: Assembly language subroutine; reentrant.

Initialization: FRIOST call (iRMX-80-based routines in
FXDISK.LIB only).

Routine Call:
CALL FREXIT

Required Stack: 14 bytes.

5.2.3.9 isk File Status Check = Functio 8

It has already been mentioned that the above disk file access-
ing routines do not perform any exception handling of their
own if an error condition is detected, except returning a
non-zero "status" value. This status value should be checked
by the application code after each disk access. Since a
frequent check of an INTEGER*2 value with FORTRAN "IF" state-
ments imposes an undue code overhead, the LOGICAL*1 FUNCTION
FRDSTA was provided. (The compiler generated code is con-
siderably less extensive if a logical "IF" is applied to a
Boolean variable rather than an INTEGER.)

ROUTINE FRDSTA:
Routine Type: Assembly language subroutine; reentrant;
must be declared as LOGICAL*1l in the calling FORTRAN
program.

Initialization: none

- 216 -

v,
$0 O X NS W WX W W M W

IR OI AL

W o Py CO Y
\$‘\ v.o ."to WM

L
W,
< .
153N
.' ‘
iﬁ_
}ﬁ . 5.2 System Interface and Auxiliary Routines
.
o .
W Routine Call:
. N
Lo +» boolean = FRDSTA (status)
E? e with: boolean: LOGICAL*1l variable (or immediate use of
O FRDSTA as a parameter, e.g., in a logical
e IF statement).
() L status: Error status parameter (zero for faultless
S operation, non-zero in the case of an
‘i\ - error); compare chapter 5.2.3.10 and
N Appendix 4.
| f\ ‘:w'
) .
e T Required Stack: 0
o
SES T 5.2.3.10 Disk Error Message Generation - Routine FXDSKE
I
AR A disk error reported by the disk file handling routines does
° -~ not necessarily mean that there was actually an error condi-
o tion. 1In order to determine, for example, whether a disk file
I with a certain name already exists, e.g., to permit its pro-
%3- tection from an inadvertent destruction by overwriting, the
> file can first be opened for reading rather than writing.
n; . There will be an error reported, of course, if a file with the
¢ E specified name does not yet exist, although this condition is
o actually the error-free case. Generally, there are three
NN different possibilities in treating a non-zero status value
-7 N returned by the disk handling routines:
N
S * The status parameter did, indeed, not indicate an error; it
,5 can therefore be ignored.
oA U
:;Q e * The application program outputs an error message of its
cj\ own, in addition to actions related to the fact that the
I::z last disk operation was not successfully performed.
Pty)
X * The generic error message output provided with FXDSKE is
g‘ used. The application software has to branch according to
AN the faulty disk operation.
-
S .
ﬁﬁ: The routine FXDSKE requires the software background and sup-
b port of the output routines described in chapter 5.2.2.3. It
Wi o generates the following error message in the scrolled part of
!g the console output:
\-' tN
:"-C:_' ;2 *%*k%**%* DISK ERROR xxx yy (TASK tsknam, LOC hexl) #*#***%*
"} hd
fx This line is accompanied by a "beep". The task name and error
:L.ﬁ location information is treated identically to the system
S
L - 217 -
B e
Ay
il
)5
o
AT
~$l

A
['g

s

S PR PR T T R e ", i WP, X" A " " A AR "an "y , - AR T,
A .".'-"." .l :“.ﬁ A%, T, 0,00 .l!l.l. !h. % A , u!‘l,'!,- .""‘0,;‘.'\!" ."-‘. ‘t N .‘»~!‘l!‘lov|?.l!|| ?"‘!h‘, g‘!‘p', : '.lg ?'t‘fh"i»

I:Q

g
RSP

o ™ Rl
l" l‘l.l‘l

v
r

LSS

-

ARAAAINC

)
AP ISP

RN
2

AR

lsa

e

. » 3 8 _F
ettt
S

R IR 5

-

SN

| A

. o.o‘

A

« N4

5.2 System Interface and Auxiliary Routines

error message described in chapter 5.1.1.6. An error number
("xxx") is provided in order to identify the particular error
condition. FXDSKE may be called after each disk access,
regardless whether the status value actually reported an error
or not. The routine is immediately skipped if the status
parameter was zero. Refer to Appendix 4 for a complete list
of error messages.

The error message generation routine FXDSKE is not reentrant
but protected by a software interlock. This interlock is
initialized by the routine FXDSKI which must be called during
system initialization.

ROUTINE FXDSKE:

Routine Type: Assembly language subroutine; not reentrant;
protected by a software interlock.

Initialization: FXDSKI call.
Routine call:
CALL FXDSKE (status)

with: status: Status parameter returned by the disk
handling routines (INTEGER*2).

Required Stack: 16 bytes.

- 218 -

P

L1

T

L

o

AP
Y

G

»

SRR
» 3

s 8
’ ~
SISy

e
IR

A

Waraa "1?‘;“

e

'1';\/

<
Sty

fh . !. % '\ :l % .5
PO S RO

x
+ ety

) o
W

{

e
PP AN,

- FEP
AR
.:Vz{¢

Ioly

P 4
'."':"c

~

LN

&

r

u

e o

LA

.Yy ‘\-},‘-
.ﬂ)

o ""I""““‘T‘Y“-"i'r‘l-‘--"'l'-'l'T

5.2 System Interface and Auxiliary Routines

S.2.4 General Utility Routines - Library FXUTIL.LIB

This library contains a set of utility functions which are
frequently required in a real-time system. The following sub-
programs are kept in FXUTIL.LIB:

NAME TYPE FUNCTION CHAPTER

FXTIME task timer task 5.2.4.1
FRSETT subr reset timer

FXOCNS subr open console file 5.2.4.2
FXRCNS subr read from console file
FXCCNS subr close console file

FRCMPS func string comparison routine 5.2.4.3
FRCVUC subr string conversion to uppercase

FRPOKE subr transfer of data to memory 5.2.4.4
FRPEEK subr transfer of data from memory
FRADDR func returns address of parameter

FRADD subr overflow-protected addition rout.| 5.2.4.5
FRMULT subr overflow-protected multiplication
FRSHFT subr scaling by powers of 2

FRPIDC subr PID controller routine 5.3.2.1

The generic PID controller routine FRPIDC will be discussed
together with the actual crystal growth control routines in
chapter 5.3.2.1; it is, however, part of FXUTIL.LIB.

5.2.4.1 Timer Task FXTIME

FXTIME is a multi-purpose iRMX-80 task which can perform most
of the lower-speed timing of an application system. (It does
so, indeed, in the CGCS.) Using the on-board clock of the CPU
board, it generates flag interrupts (compare chapter 5.1.1.4)
each second, every ten seconds, each minute, and in arbitrary
programmable intervals from 1 to 256 seconds. Furthermore, it
provides two (unsigned) INTEGER*2 seconds counters, one start-
ed immediately after the system reset, and one, when a dedi-
cated flag was set. An alarm clock function (linked to a flag
interrupt) is executed when the second seconds counter is
equal to or exceeds a preset value. Finally, the task gener-

- 219 -

YRS
J'\‘.-f

44 8 o i v . g A - W Pw NPT YL T U WLV VWV 1

S
-
. 5.2 System Interface and Auxiliary Routines
N ates ASCII strings (in the format HH:MM:SS) which represent
{ the actual time, the internal system time (i.e., the time
e since the last system reset), and a relative time which can be

started arbitrarily by setting a flag. These three strings
are output on the console, once every second, thus off-loading
the application program from providing this output: console
- output can be enabled independently for each of the three time
,:) display strings. (The third, relative, time is not displayed

in the CGCS.) The interaction between FXTIME and the system
is performed exclusively via a 65 byte area in read-write
memory which can be regarded as a COMMON block by FORTRAN
programs. The start address of this area is declared PUBLIC
as FOTIME; it has to be tied to the corresponding FORTRAN
COMMON block by means of the procedures discussed in chapter
6.

FXTIME provides a total of five output flags which can be used
to trigger a flag interrupt within other tasks, and therefore
to control the timing of the system. Three flags - the sec-
onds, ten seconds, and minutes flags =~ are set in regqular

Wy
1
1 ’
P

te' s .,

.:; intervals, starting with the system reset; the variable inter-
o val flag is set in regular intervals which can be defined
o between 1 and 256 seconds by means of an unsigned INTEGER*1l
N variable. (Note that values greater than 127 correspond to

e
N -" v

negative integers in FORTRAN; 128 is represented by =127, and
255, by =-1. A zero value causes a 256 seconds interval.) The
variable which presets the interval may be changed at any
time; still, it does not become effective before the next flag
: interrupt happened. The fifth flag is set when the alarm
C.- clock is triggered, i.e., when the seconds counter #2 which is
e started when a dedicated flag was set becomes equal to or
greater than a preset time. These two time values are stored
as unsigned two-byte integers. This approach permitted to

-

Of

;jﬁ extend the executable time range from 32767 seconds (ap-
Vi proximately 8 hours) to 65535 seconds; values greater than
'jﬁ' 32767 are represented by negative INTEGER*2 values in FORTRAN.
> In addition, the execution time of FXTIME could be cut down
Wi significantly by omitting the sign treatment. Since the
o seconds counter #2 keeps running only while it is enabled by a
W control flag, there are two ways to disable the "alarm clock":
o either can the preset time be set to a very high value which
N is unlikely to be ever reached (which is also done automa-
{ ﬁ tically each time an alarm was triggered), or the counter #2
L is simply disabled by resetting its control flag. Note: All
0. flags used as Boolean data are single-byte variables which may
ol - assume the values 0 (flag reset) or OFFH (flag set), which
o correspond to INTEGER*1l values of 0 and -1, and to LOGICAL*1
AN values of .FALSE. and .TRUE., respectively. Flags which are
3 used as an input are interpreted as reset if all bits of the
ot byte indicated by the address are zero, and as set if any bit
:-_:: - 220 -

ol

<

)

A0

BTN

o

o

N

:5. e T T T L T T e L T T L e T e T g T e T e e N

i

NS

@

P l:
’,
e

- l"\—\‘&

- 5.2 System Interface and Auxiliary Routines

L
AN

differs from zero, i.e., for any non-zero INTEGER value. In
contrast to the "alarm clock" function, the setting of the
other four output flags by FXTIME cannot be disabled.

S I

NN The seconds counter #2 can be enabled at any time; it is reset
~ - to zero while it is disabled, starting from zero when the
b counter is activated again. The counter #1, in contrast, can
v] be reset only by a call to the reset subroutine FRSETT; it can
.& e neither be stopped nor disabled. The same considerations with
}) regard to its internal format - unsigned two-byte integer -
o apply as to the counter #2.

", -

hE > Three character strings hold the display of three different
‘ timers: The first timer indicates the time since system reset
P’ (or, since the last FRSETT call), the second, the actual time,
A and the third, a differential time. All three strings have
N the identical format HH:MM:SS. The internal time wraps around
\ﬂ

to zero after 96 hours, the actual time is output in a 24 hour
format, and the differential time is limited to 99 hours by
the two digits display area for the hours. 1In order to permit
a correct display of the actual time, the time of the system
o reset (or the time when FRSETT was called) has to be made
s known to FXTIME, which is done by means of three INTEGER*1
variables (for hours, minutes, and seconds, respectively).
The differential timer, finally, is reset each time a per-
tinent flag is set. '

s,
gER

o
L.

)
o

i"‘.:'.l"

7 P o

"
-

These three strings are kept in memory locations which can be
- accessed via the COMMON block FOTIME; they can also be output
A on the console. Console output is performed via the I/O rou-
- tines in FIORMX.LIB which have therefore to be included in the
- system. Three flags permit the independent activation of the

! output of each of the strings. The output can be arbitrarily

;: located on the console CRT screen; a control string for the
’: . string output routine FRSTRO (compare chapter 5.1.2.3) has to
o be provided in FOTIME for each timer string.
H] "':.

! The 65 byte control area FOTIME contains the following data:
T

IS BYTE TYPE MEANING

N

3* .. 0 I*x1 One second interrupt flag byte (0)
e > 1 I*1 Ten seconds interrupt flag byte (0)

"; - 2 I*1 One minute interrupt flag byte (O)

o 3 I*1 Variable interval interrupt flag byte (0O)
NSRS 4 I*1 Alarm clock interrupt flag byte (0O)

l- '-

AR

} 5 I*2 Seconds counter #1 (from system reset) (O)

v . 7 I*2 Seconds counter #2 (started with byte 34) (0)
R 9 CH*8 Internal time string (from system reset) (0)
® . .

]

- - 221 -

9 .

e

f u -~

>

4 .

[

1 -

L) T AT B N A I N P A A PP R AR LR LSRR SRR s 35 TP
D0 Yy e ¢ b LS YN T P A EATY

‘fh ,."1‘. X K -Aa.f;‘ AL .|.’o -'l..n'ln'l .‘ .. X ‘ Xy X) 509,980 . ’» , AT AN S ') X ¥ »Z'”

Fﬂum'mmwwvvv TR R EST AT RN LR R R R R
LA
-_".-.

P
A

X

KA LAPY. 3.5
W /‘-/\' [
KX g

5.2 System Interface and Auxiliary Routines

- -:'
W 17 CH*8 Actual time string (O)
| 25 CH*8 Differential time string (O)

.

ij 33 I*1 Interval for variable interval interrupt (I)
':q 34 I*] Run flag for seconds counter #2 (I)

- (0 ... Stop, <>0 ... Run)

5 Cn" 35 I*2 Setpoint for alarm clock (counter #2) (I)
V) 37 I*1 Flag: Reset differential timer (<>0 ... Reset)
[ﬂ.._". (I)

o \._'.

;ﬁ 38 I*x] Time of system reset - Hours (I)

PN 39 I*] Time of system reset - Minutes (I)

A 40 I*1 Time of system reset - Seconds (I)

e 41 I*1 Flag: Enable internal time output (I)

o (0 ... Disable, <>0 ... Enable)

o 42 I*1 Flag: Enable actual time output (I)

A 43 I*1 Flag: Enable differential time output (I)
-"\'-

.J 44 CH=*7 Output control string - Internal time (I)
A (Control string for an FRSTRO call -

o "<line>,<column>")

SN 51 CH*7 Output control string - Actual time (I)
TN 58 CH*7 Output control string - Differential time (I)
4 ¥

Y J‘.-v'
i- TASK NAME: FXTIME
“vﬁ ENTRY POINT: FXTIME
P STACK LENGTH: 34 bytes
4 PRIORITY: 129 (or even higher)
5; DEFAULT EXCH.: none

N EXTRA: 0

D

[> »/

«}: INITIAL EXCH.: none
}qff EXECUTION TIME: 1 ms (worst case) once a second
* {.‘
o

e ROUTINE FRSETT:

e
nf: Routine Type: Assembly language subroutine; reentrant.
W
Sy
35‘ Initialization: none.

. 7k Routine call:
R
ﬁ} CALL FRSETT

o .

bh: Required Stack: 2 bytes.

..‘; '

) - 222 -

S

T Y e TS % L T S e
W o P I IS
e 1ﬂuﬁh&& ™ iy,

e -
S
N
e
\'_‘.
;ﬁi - 5.2 System Interface and Auxiliary Routines
‘ p 5.2.4.2 Console Input Routines FXOCNS, FXRCNS, and FXCCNS
:5 ! Three routines - FXOCNS, FXRCNS, and FXCCNS - permit console
ji.r‘ input from an arbitrary disk file which replaces the console
,:Atb CRT terminal. Replacing the console input by disk file data
ﬁgiku requires that exactly one logical line must be supplied to the
Ay system with each READ call. This is, however, not possible
\ ', with the standard disk I/0 routines of chapter 5.2.3 since
A these routines return a fixed number of bytes without regard-
N ing the logical end of an input line. Therefore, a special
o Read Console routine FXRCNS was prepared which returns always
havs exactly one logical input line (with a length of 1 to 80 char-
T acters). FXRCNS obtains its input either from the console
. terminal (trivially), or from an arbitrary disk file. A Line
A Feed Character (0OAH) is interpreted as the end of the input
e line. Input lines exceeding 80 characters (including the
po terminating CR-LF pair) are truncated to 80 characters; their
SEAS remainder is submitted with the next FXRCNS call. The input
jiﬂ - line may be further processed by the User Buffer Input rou-

™ tines FRDTBI and FRSTBI described in chapter 5.2.2.2:; the

‘:;i" buffer format used is fully compatible.

% Y

o N The console file is opened with a call to FXOCNS; the name of
ﬁg a disk file or device suitable for input must be specified
A with the call. The file is opened, using the Disk Interface
{ n routines of chapter 5.2.3, and assigned the file number -1
:,: (OFFH) . In the case of an error during file opening and

reading, the error is reported with the default disk error
o message routine (compare chapter 5.2.3.10), and the console
. input is re-directed to the console terminal.

.,

-

. An input line is read from the currently valid console file
- via a FXRCNS call. The start address of an 82 byte buffer
. according to chapter 5.2.2.2 must be specified with the call:

A

P

"t

o

,o INTEGER*1 BUFFER(82)
0 LOGICAL*1 STAT

."' REAL X

Pl c
N CALL FXOCNS ('CONSOL')

T c (a disk file on :F0: with the name CONSOL

}ﬁ-, c is to be used.) ‘
\:5; ;: 100 CALL FXRCNS (BUFFER) “

b cC (read up to 80 bytes of console input)

fr CALL FRDTBI ('l,E',X,BUFFER,STAT) 1
W C (scan the buffer for a floating-point |
N o number and store the result in X) |
o C
::?' . C (process the input) |
S c

. |

% - 223 -
) :'_-F"', :.r
_,-“: o ‘
8 "-, |
L

o

W W
1 Q v |
D ~ i
T T N e e S X o e

W

bd

'\-\.‘
oo 5.2 System Interface and Auxiliary Routines
<V
NN
LA GOTO 100
5 c (read the next input line)
o,

f} The above example is equivalent to
s LOGICAL*1 STAT
oA REAL X

l‘) C
1; CALL FRDATI ('1,E',X,STAT)

n »

"l
: ’- if ':CI:' is used in the FXOCNS call rather than 'CONSOL'.
“--,.:
et The input from the specified console file is continued until
o (a) the console file is explicitly closed with a FXCCNS call,
S or

o~
AN (b) the end of the console file is encountered (i.e., if a
. string of length zero is read). In the latter case, an
® Error 29 (End of Console Input File) is reported.
e In either case, the console terminal is re-opened as the

system console,

3E- The Console Input routines are not reentrant, and they are
(" unprotected. They must, therefore, be called by one task
. only, and only one file can be used in conjunction with them
‘o at a given time.
[0
:;j The Console Input routines are not used within the CGCS; they
¢¢ constitute an essential part, though, of the Macro Command
t; Editor utility COMMED (compare chapter 7.2).
s,

v,
. ROUTINE FXOCNS:

o

ol

gﬁ Routine Type: Assembly language subroutine; not reentrant.
I*l’

,q Initialization: none.
,\p\._,
Kon Routine Call:
o

‘ CALL F3OCNS (filename)

:!' with: filename: Filename, according to ISIS-II rules.
K)
;: Required Stack: 18 bytes.
R

l\‘

X
5

~

[Nt S0N

BN o a A A Al S TN . Lo 0
R 0 ety ‘1'.':.:!. A ARG N AG T u‘.l‘ BN AW S LS IO MIEAD O TSN, NG SR

2
;"J»-'

O
@i
& '_‘:;.
e
o 5.2 System Interface and Auxiliary Routines
-
A P ROUTINE FXRCNS:
?E{ " Routine Type: Assembly language subroutine; not reentrant.
SAS
Gl Initialization: FXOCNS call.
in
L 1
W'l Routine Call:
ol
:*i i. CALL FXRCNS (buffer)
Y > with: buffer: 82 bytes buffer, formatted according to
\: E_ FRDTBI and FRSTBI rules (compare chapter
Do o 5.2.2.2.1).
e o Required Stack: 18 bytes.
oo w
o
ANCI ROUTINE FXCCNS:
s
® P Routine Type: Assembly language subroutine:; not reentrant.
o
o' c s . .
YOt Initialization: none.
ST
e Routine Call:

5
L

™

CALL FXCCNS

ZET Required Stack: 18 bytes.

» :::)

D) t. 5.2.4.3 Command Line Interpreter Support Routines

; «

1ﬁﬁ ’ Command line interpretation involves usually the comparison of
Eo input strings with command strings. This comparison cannot be
g{t'; performed in a straightforward way by FORTRAN based software,
o particularly if the lengths of the input and command strings
- are not necessarily identical. Two routines, FRCMPS and
Sl FRCVUC, have been provided in order to make the command line
oy interpretation easier.

) ’5-""4

;.%: . FRCMPS compares two strings which are submitted as parameters,
ub%.ﬁg either until the strings are found to differ from each other,
f. > until the end of one of the strings was encountered, or until

a special "wild card" character was recognized in one of the

3& strings. The routine - which has to be declared as a LOGI-
-:& CAL*1 FUNCTION in FORTRAN - returns a Boolean variable which
.\? is .TRUE. if both strings are equal, and otherwise .FALSE..
O Since leading blanks (spaces, tabs, and other non-printgble
“é - characters) are stripped off the strings before the comparison
(X]
,,3 - 225 -
Kol A
N %
7?4 .
o
iﬂsiy
\
vy

e 0 N T et TR e e N A T R I B AR I A e L NG M N WO
A .; AL ". . a‘ .t., I..‘l "?‘, -: 'N 2 a ..'« Rola g By K \- - ."'. A } X b M Al R 'D\'Q. LB Ra X * e, %" "\.‘.'.

* .‘o.l'}": A 1) :

- .
P}

-"’4' Y 3

s 2

«|

;,-

[R |

}ll',.)‘

1

*

AT ~

- o

o)

SN N

-~
xow

MO G A ey s

Yy

s’ & All a \;‘;ﬂ-"‘n G % e

5.2 System Interface and Auxiliary Routines

is performed, the position of a command within a command line
does not matter. The "wild card" character is particularly
useful if complete words are permitted as commands but an
abbreviation of these commands to their leading characters
should also be possible. The "wild card” character is defined
at system configuration time with the one byte variable
FOWCCH. The library FXUTIL.LIB uses a vertical bar ("|") as a
default wild card character. (Note: FOWCCH is actually a
program constant which can be defined, e.g., with an assembly
language "SET" instruction. It is included in the program
code rather than being stored in memory like a variable.)
Suppose the string "CO|" was specified as one of the two
parameters of the function FRCMPS. In this case, a .TRUE.
value would be returned if the strings "c", "co", "“"COM",
"COMMAND", or "CONTROL" were specified as the second parame-
ter. On the other hand, FRCMPS is set to .FALSE. if the
string "Cx" 1is encountered where "x" is any arbitrary number
of printable or non-printable characters other than "O". Note
that CHARACTER variables are filled up with spaces by the
input routines if the input line was shorter than the size of
the CHARACTER variable. A single "C" entered on the console
and stored in a CHARACTER*4 variable will therefore be fol-
lowed by three spaces in its internal representation. It will
therefore be recognized as different from the above mentioned
string "CO|". Only a "C" read to a CHARACTER+*1l location will
be regarded identical to this comparison string.

Since a correct command which is, e.g., given in lowercase
characters would be considered different from an uppercase
command string, the subroutine FRCVUC was provided whose
commission is to change to uppercase the contents of the
CHARACTER variable specified as its parameter. (Actually,
characters with an ASCII equivalent of 61H or greater are
converted to the range of 41H to 5EH, which affects also some
special characters. These characters are rarely used in com-
mands, though.)

ROUTINE FRCMPS:

Routine Type: Assembly language subroutine; reentrant; has
to be declared as a LOGICAL*1 FUNCTION in FORTRAN.

Initialization: none
Routine Call:

boolean = FRCMPS (stringl, string2)

- 226 -

o W W W, W W

VNN,

ot el
c

< 5.2 System Interface and Auxiliary Routines

with: boolean: LOGICAL*1 variable (or direct use in a
LOGICAL IF statement).
stringl,2: CHARACTER variables or strings of
) arbitrary lengths.

a s

4

MO,

Required Stack: 0

ROUTINE FRCVUC:

e}

A
"y

Routine Type: Assembly language subroutine; reentrant.

& Initialization: none

.';j

Routine cCall:

e

CALL FRCVUC (char.var.)

with: char.var.: CHARACTER variable.

Tax

Required Stack: 0

VY
-.'{lf‘:ll.,'- Ny .
. -
A

oy
&y

$5.2.4.4 Data Transfer To and From Absolute Memory Locations

vy Complex applications in a real-time system require frequently
the direct access to absolute locations in memory, e.g., for

> the access to Variables in the CGCS. Such an access is impos-
' sible directly from a FORTRAN program since FORTRAN permits to

> handle the value stored at a (symbolically referenced) address
: only but not the address itself. Two routines, FRPOKE and
’ FRPEEK, permit to store date at a certain address which can be
& submitted as an INTEGER*2 constant or variable, and to read
Ko data from this address, respectively. Therefore, data can be
J.ﬂi transferred to and from regular FORTRAN variables if their
Wour /r positions in memory are known. Both subroutines require the
specification of the numbers of bytes which are to be trans-

99 mitted; they permit thus not only to move single bytes but
e & also multi-byte variables and even arrays. The number of
%.‘- bytes which may be treated with one FRPOKE or FRPEEK call is

limited to 127; negative values of the INTEGER*1l length para-
meter or zero cause the routine to be skipped without further
notice and effect.

Dl A
e =2

- @

ﬁ‘ 4 The address of a FORTRAN variable can be determined at execu-
f Nj tion time by means of the INTEGER*2 FUNCTION FRADDR.
D

R - 227 -

Y ,

e

.6 o

)

L2

o

'i.

AP ol
".‘":'"l.“v. :‘.' ".’n:‘!':‘:h‘ AN "o ‘.ll' “ '."‘o"h"h’ SO0 '-"'o‘.'o‘!‘."’o‘f’. e, ' AN .:‘ "0 R R ;’i. ' o&d"x"‘.o ‘.o".l. -0

7ttt @ I
el S,

5.2 System Interface and Auxiliary Routines

[o
ol Rt)

ROUTINE FRPOKE:

PR X

4

Routine Type: Assembly language subroutine; reentrant.

2.

Ca

o Initialization: none
o Routine Call:

')

o CALL FRPOKE (variable, address, length)

N

2o,

Lo with: variable: Name of a variable (or first element of
fS; an array) which is to be stored in memory.
NN address: INTEGER*2 value (constant or variable)

indicating the start address beginning

B with which <variable> is to be stored in
N memory.

N length: Positive INTEGER*1l value (>0, <128) in-
bﬁ dicating the number of bytes to be trans-
O ferred.
Xy »
;QR Required Stack: 2 bytes.
o

s"/ .,

- ROUTINE FRPEEK:

'./:
!“ Routine Type: Assembly language subroutine; reentrant.
ﬁ#E Initialization: none
158

he Routine Call:

)
Lo
;jq CALL FRPEEK (variable, address, length)

o with: variable: Name of a variable where data are to be
o stored which are copied from memory.
o address: INTEGER*2 value (constant or variable)
e indicating the start address of the source
T data.

o length: Positive INTEGER*1 value (>0, <128) in-
T dicating the number of bytes to be trans-
"3 ferred.

‘.%‘
o Required Stack: 2 bytes.
i
S
ﬁﬂs
‘:‘)
e
Wi

9.,

o - 228 -

}5

Ve

o

*n-'

A

0o

v’;
%

RO T IR T ST TG 0 T I SR P ¥) N) Vgt 0 ! Y, AR N M RA(NN
P Ten o o dn Lol et w e o T A s TR RN e

LA L el

-

PrTYT
';‘-“"":r)]
' =

a ata
Py

5.2 System Interface and Auxiliary Routines

-
-
-

oL
2

ROUTINE FRADDR:

Routine Type: Assembly language subroutine; reentrant; has
to be declared as an INTEGER*2 function.

P

A Initialization: none

» v Routine call:

S

:Qi v integer*2 = FRADDR (variable)

N

ﬁﬁ::? with: integer*2: Set to the address of <variable>.

%] <

Required Stack: 0

ns o

5':.‘\ 'r:

N ,: -

ol 5.2.4.5 Overflow Protected Integer Arithmetics

po
‘.’ ps Three assembly language routines, FRADD, FRMULT, and FRSHFT,
S permit the overflow protected high-speed integer addition,
SORS multiplication, and division operations particularly required
*;d = for the operation of the generic PID controller routine FRPIDC
~ (compare chapter 5.3.2.1). The results of the FRADD and
2 FRSHFT operations are set to the absolutely largest integer
Panib number with the correct sign if they would otherwise exceed
ﬂv, the permitted range of an INTEGER*2. FRADD performs the
ﬁ#q addition of two INTEGER*2 variables, FRMULT, their multiplica-

tion to a signed four byte result (INTEGER*4) (in which case
an overflow is impossible), and FRSHFT allows to multiply an
INTEGER*2 variable by a positive or negative power of 2 which
is specified as its second parameter (which corresponds to an
appropriate left or right shift of the binary data). Rounding

%:
ppLsl
S T W

o of the least significant bit is provided with FRSHFT in the
s case of a negative scaling factor, i.e., of a division by a
SRR (positive) power of two. With the exception of FRSHFT which
Ap j can also be called from PL/M programs, these three subroutines
e can only be invoked by assembly language routines. (The high-
.!_ x speed performance required for these routines prohibited the
:ﬂg-b use of the parameter passing conventions of FORTRAN or PL/M.)
. =

L)

A
N ROUTINE FRADD:
‘.) i
'Qv‘ Routine Type: Assembly language subroutine; reentrant.
’,u % Initialization: none
| y o)

o
': Routine call: No call from FORTRAN or PL/M!

9. .
) - 229 -

~ i ~ L T G Yo T A » > p B e L
X l.t. ' AL Y, ‘ A ? RN Y .' ‘i’ e 4,40, .:‘!l,‘.‘-‘!l.‘. ‘

\' L ves 3aa ain Baela 2Bl e S A<k ace g-s sid a0l aas Ak ot Al okeaad- o W
s

Y

*.

@
£
Hf 5.2 System Interface and Auxiliary Routines
o from assembly language programs:

CALL FRADD

)
‘:j Parameters:
R
e D+E ... First item
i H+L ... Second item, result

\
N Required Stack: 0

n
XY ROUTINE FRMULT:

. Routine Type: Assembly language subroutine; reentrant.
> Initialization: none

e

- Routine call: No call from FORTRAN or PL/M!
b,

'; from assembly language programs:

- CALL FRMULT

<.
bz Parameters:
aj Input:

*

D+E ... First factor
H+L ... Second factor

iy

AN

: Output:
R D Product, byte 3 (MSB)
. E Product, byte 2
H..... Product, byte 1

. Product, byte 0 (LSB)

e s
h 3
LN N

()

P b

Required Stack: 6 bytes

Sl

Fal
g
4 ROUTINE FRSHFT:
fb Routine Type: Assembly language subroutine; reentrant.
N
™ Initialization: none 5
i
" Routine call: No call from FORTRAN! !
> from PL/M:
o~ result = FRSHFT (shift, input)
N
'% with: <result> := <input> * 2 ** <shift>
‘
" - 230 -
Bt
w'.::‘
u
[]

] '\'I.‘\-"

: " 53 PRI N NGRS SO0
.l‘. 'i'.h AN e SR ey .. t!..."l‘.""“ “ * 'o. 'u\ 2 et aGhe,] . . 2ot ot N N XN

e

4

2

e o o s e g

5.2 System Interface and Auxiliary Routines

input, result: type ADDRESS
shift: type BYTE

from assembly language programs:
CALL FRSHFT

Parameters:
C Shift parameter:
>0 ... Left shift - multiplication
<0 ... Right shift - division
0 ... No change
D+E ... Input value
H+L ... Result

Required Stack: 0

- 231 -

.. .
AAAAAL

=y

JLS' 'Y,(L‘_‘\ ..l'. .

R &,

3 a L

W 1=

ot

!

-
-l

L ERRE AR

WY

- \,s*s,\,:,

: DN A R » by N OBCO0
G T e T e et e a ottt

5.2 System Interface and Auxiliary Routines

5.2.5 High-Speed Hardware-Based Floating-Point Routines -
Library FP8231.LIB

A number of additional numeric routines enhance the perfor-
mance of FORTRAN programs running on Intel 8080/85 based sys-
tems by partly replacing standard FORTRAN modules. Using the
hardware Arithmetic Processing Unit (APU) (Intel 8231) rather
than software floating-point algorithms, these routines are
considerably faster than those provided in the standard FOR-
TRAN-80 libraries, and they require significantly less code.
The following interface software was specially prepared for
the RXISIS-II/iRMX-80 environment:

* Replacement routines for the standard Intel FORTRAN-80
floating-point algorithms of the libraries FPSOFT.LIB and
FPSFTX.LIB. The alternative routines require an Intel 8231
Arithmetic Processing Unit to be present in the system.
Programs utilizing the alternative routines must be run
either under iRMX-80, or under RXISIS-II.

* Replacement for the most important floating-point functions
contained in the standard FORTRAN-80 library FPEF.LIB. The
same hardware and environmental requirements apply as above.

* An alternative conversion routine from binary floating-
point notation to ASCII strings which replaces the equiva-
lent FPSOFT.LIB or FPSFTX.LIB software. (The output of
floating-point numbers is usually performed much more fre-
quently than the complementary conversion from ASCII to
floating-point; it appeared therefore not necessary to
replace the latter routine by software using the APU.) As
above, an 8231 APU and an iRMX~-80 or RXISIS-II environment
are needed.

The high-speed floating-point routines are used within the
CGCS (where they particularly speed up output of numeric data
to the console screen), and in the RXISIS-II versions of the
support utilities SHODAT, COMMED, and READCM (compare chapter
7.).

5.2.5.1 General Information

The alternative floating-point routines effect a transparent
replacement of the standard software floating-point algorithms
contained in the Intel supplied FORTRAN-80 libraries. They
are based on a dedicated Numeric Processor, namely, the Intel
8231 APU (Arithmetic Processing Unit). They adapt the stan-
dard floating-point format used by FORTRAN-80 to the special

- 232 -

o, ¥ ‘

- Y oy .
o':..c'beo"‘.:‘ila ..‘!"!0 e !O“.l .‘,‘tl-'!"r',"u', o'!'u

‘I
Lo

AR
2

)

-
P)
,.-&:‘-xﬂ [

-,
-

Py

“»
1

"

e’ n

PNy

==

:

L AT Oy

o A A A AL . . A AL
LN T, .' Cah it ?-."\' A R S R A R T T

5.2 System Interface and Auxiliary Routines

format required by the APU, and vice versa. Special provi-
sions were made to extend the relatively limited numeric range
of the APU (+1.0E-19 ... *1.0E19) to the standard FORTRAN-80
range (*1.0E-38 ... $3.4E38). Despite the considerable soft-
ware overhead imposed by the different data formats, the al-
ternative routines run significantly faster than their soft-
ware counterparts. The amount of code required is reduced by
about 50 percent; the stack is also significantly smaller.
The overall system performance is thus improved considerably.

Aside from two exceptions, the routines in FP8231.LIB need no
explicit calls from FORTRAN programs; the proper calls are
automatically inserted by the FORTRAN compiler. The implemen-
tation approach chosen for FP8231.LIB off-loads therefore the

programmer from the burden of explicitly calling APU-based
software.

The following features are provided in FP8231.LIB:

* Basic arithmetic routines, corresponding to the FORTRAN-80
routines in FPSOFT.LIB or FPSFTX.LIB:

- Addition

- Subtraction

- Multiplication
- Division

- Square

- Square Root

* Floating-point to ASCII conversion, corresponding to the
routine FQFB2D in FPSOFT.LIB or FPSFTX.LIB.

* Transcendental functions, replacing routines in FPEF.LIB:

- Logarithm (natural and common)

- Exponent

- Sine, Cosine, and Tangent

- Inverse Sine, Cosine, and Tangent

- Arctangent of two parameters (ATAN2)

- Absolute Value of a Complex Number (CABS)

The interface routines for the 8231 APU were designed for
operation in a system based upon standard Intel OEM Single
Board Computer hardware. An 8231 Numeric Processor Multi-
module expansion board (iSBX 331) is available for the
8085-based iSBC 80-24 Single Board Computer. With regard to
this hardware environment, the software was designed to run
under Intel's Real Time Multitasking Executive iRMX-80 (and
hence, under RXISIS-II.) Therefore, the APU-based routines

- 233 -

oy ™ %

)

LA

'

J‘._vl‘
%
ia
-iy 5.2 System Interface and Auxiliary Routines
v,
N
L_* have to meet the specific requirements of a real-time (or, a
pseudo-real-time) environment with a multitasking approach.
:3 The main target pursued with the APU interface routines was to
!*j replace the standard FORTRAN-80 software floating-point lib-
[0 rary routines with a set of functionally equivalent software.

The standard FORTRAN-80 routines are either reentrant (i.e.,
\ they use the stack of the task from which they were invoked as
o) a scratchpad for internal data), or they use resources which
o are local to each task (namely, the floating-point accumulator
which is allocated in an extension of the Task Descriptor of
each task which performs floating-point operations). Both
<+ approaches protect data handled by the routines from inter-
ferences if a routine is interrupted while servicing one task,
and eventually invoked by another task without being permitted

“
L

be protected. The longest APU algorithm needs less than 3
milliseconds (the Power function), and the plain arithmetic
operations last less than 100 microseconds, which is in the
order of magnitude an iRMX-80 interrupt service requires.
Therefore, the critical parts of the APU interface routines
are protected simply by disabling the interrupt system, which
evidently prevents other tasks from running and eventually
accessing the APU. Since disabling and enabling the inter-

Eao . . .
o to finish the previous operation. The APU hardware is, in
- contrast, a shared resource, and provisions must be made to
N prevent tasks from interrupting an APU operation in progress.
3; There are, in general, two possibilities to achieve this goal:
g; * Software interlocks, or

"f * Disabling interrupts.

U%, The first approach is the one primarily suggested by the
< structure of iRMX-80, and it appeared initially favorable
\ because it permits the CPU to continue processing while the
' APU is busy. With regard to the very fast APU operation,
NN however, the overhead to execute the interlock structures
Wi would require more time in most cases than the APU action to
¥

l.'..‘ o
] ()

A3
.1
.
.

» &
l.l‘l

)
HI .ll \' ¢

)

L rupts requires only one-byte machine instructions with an
3# execution time of 800 nanoseconds each, this approach is
& clearly faster and more code-efficient than a software inter-
s lock; the synchronization between the CPU and the APU is done
ot by a simple polling loop. Since the interrupts are never
vy disabled for more than a couple of milliseconds, no signifi-
o cant deterioration of the interrupt response of the system is
b to be expected. (Interrupts happening at a higher rate than a
;f} few hundred per second are too fast anyhow to be reasonably 1
jig processed by iRMX-80.)

) -f\t

‘1t

9.

.,.-

- 234 -

O Ry
PP AL PN
'n:: LI VL L T W Y TN,

- o e

-

]

PR NN S

"

PAP R ARV M

'l_..) _" ..’ ..' -.’ -‘r -

-

» ¥ ¥
YT BTSRRI Y

L, PR T

.-.'.-/f-s-.-.

CyR

I

PR
LI R

. '.-. "j

5.2 System Interface and Auxiliary Routines

Compared to the standard software floating-point algorithms of
FORTRAN-80, the accuracy of the APU operations is slightly
worse, due to the fact that the internal results are truncated
to the mantissa length of 24 bits rather than being rounded.
For most operations, the absolute values of the results ob-
tained with the APU are therefore slightly less than those
derived from software algorithms. The maximum relative dif-
ferences lie in the order of 1.0E-6; in most cases, the rela-
tive differences between software and APU based results are
less than 1.0E-7. For practical programming, this deterio-
ration of the floating-point accuracy can be neglected.

5.2.5.2 Additional Routines in FP8231.LIB

In addition to the actual replacement routines for the stan-
dard FORTRAN-80 library floating-point algorithms, there are
two functions available in FP8231.LIB, namely, ATANX and CABS.
ATANX: This function is equivalent to the FORTRAN ATAN2 func-
tion (inverse tangent of the quotient of two parame-
ters). Still, this routine requires less execution
time and less stack, due to its simpler internal
structure. Two parameters of type REAL are required.
Call from FORTRAN:
result = ATANX (paraml, param2)

with: result = arctan (paraml/param2)
-PI/2 <= result <= PI/2

CABS: This function calculates the square root of the sum of
the squares of its two parameters, corresponding to
the absolute value of a complex number.

Call from FORTRAN:
result = CABS (paraml, param2)

with: result = SQRT (paraml**2 + param2**2)

- 235 -

-

N AP PN R T, W P O R o N A N N A G R S AN R G
AN AN .‘.r.‘.r# ey ,,_.n e .r.\- o o) A\‘A\, o S A ‘-‘!\ -(\ A

Chd

a

. . ’ |.
LAY './‘. ‘./‘.{'-

Ca
»
L~
.-
-
L

v

SHASRAT

%% PR
e A EE®

RO X
oLt

LS

We

e e

P

R

D

Ol
X ’(',

AT IR T A . A a AN N AL LT S
4 "l. ’ -.‘,‘.- S-,‘\. B ;,“ ."o.b‘:?.'o. OJQ I.'. .:."l LW 1!‘?¢-\- LN !‘. e Ly

Al

5.2 System Interface and Auxiliary Routines

5.2.5.3 The Implementation of the Alternative FORTRAN-80
Floating-Point Routines

The alternative FORTRAN-80 floating-point algorithms can be
easily implemented in a system by including the library
FP8231.LIB at system configuration time. With the exception
of ATANX and CABS, the calls to the APU routines are inserted
automatically by the FORTRAN-80 compiler; the replacement of
the software floating-point algorithms is simply effected by
linking the library modules in the proper order.

The current version of FP8231.LIB supports an 1iSBC 80-24
Single Board Computer with an iSBX 331 Multimodule Board
installed in Multimodule connector Jé6 (base address OFOH).
Other base addresses can be used if a constant F@BASE holding
the proper port address is declared PUBLIC in a module linked
in front of FP8231.LIB. The programs using the alternative
routines can be configured either as complete iRMX-80 systems,
or as main programs to be run under RXISIS~-II. RXISIS-TI
programs can be run without re-booting the system afterwards;
no measures exceeding those required anyhow for the generation
and execution of a real-time system are necessary.

The linkage sequence is in both cases:

RMX8xx.LIB (START) *)
Object Files
FORTRAN-iRMX-80 Interface Routines
FP8231.LIB

F8ORUN.LIB

FS8ORMX.LIB or FS8ONIO.LIB
FPEF.LIB

FPSFTX.LIB

iRMX Libraries *)
PILM80.LIB

RXISIS.LIB #)

*) Not for RXISIS-II based programs.
#) Only for RXISIS-II based programs.

The stack requirements for the various operations are listed
below. The two values given apply to an error-free and an er-
roneous operation, respectively. In the latter case, EH
stands for the stack requirements of the error handler. The
programs or tasks using the alternative FORTRAN-80 routines
should provide the maximum stack required for a single opera-
tion, plus some reserve.

- 236 -

LRERTR TS LRSS f\‘(‘\.
ot ;\‘ﬁcAuo.,‘

\n’\v‘ e

w
el

v - J - 2 u ™, % gl bl - ol oS bl . RA 4% ot ol oD 2 A AVAci Bl A - Bl el Sadl Sall Bl il i i
h".n ‘T
Y
S
Tt NN
,‘ 1
o
e W 5.2 System Interface and Auxiliary Routines
AN
NN Addition: 26/48+EH

n Subtraction: 26/48+EH
S Multiplication: 26/48+EH
Division: 26/48+EH

Square: 16/50+EH

Square root: 26/56+EH

Common Logarithm: 46/88+EH

po Natural Logarithm: 46/88+EH

o Exponent: 46/88+EH
.

OSNE Sine, Cosine, Tangent: 26/58+EH
YR Inverse SIN, COS, TAN: 26/58+EH
N ATAN2: 38/66+EH
oo - ATANX: 32/60+EH
. *.j-‘. CABS: 20/52+EH
< .Rl

S B . .

3:J;3 Conversion Bin./ASCII 34

o '

o
b o
B
e
l.:l.. o
oL
.f'ij
_.-::f
\:::: e
‘\:::: :-l
bl
I »

N

N

(AR
s
LA
i,,"-l 1':.

ol L

LS

g)

2

AN

[Ny &

b2

[} :n" ,":.

[l

'f.:' |
AT ‘
| .-?. ‘“

~'.|

A - 237 -

e 3

:’ W !

5 1
WGl A
LR
D W
xﬁ:

Y

P

o e
A I 2>

h 3
v

YL VL I R T T I LR TR W’-"‘" T AR '(-J.-'r-',l- o ‘g'».f"q‘q RGN 4
I A B AR A A el e ST A A S e

3

5
g

5,
[

I
oy
ANRIS

o~
e
™*s

e,

Y
7

L

Lo

1

.
v @

'I
L)
Il Th

IV;N'
“ 1]

by
X

G
SANRAE

A &

L"'

s -~
l. ?
\‘. l‘. .

.‘_'i .‘-

5@ 2

5.3

5.3 The High-Level Growth Controller Software

The High-Level Growth Controller Software

5.3.1 The Operator Interface

5.3.1.1 The Console CRT Screen

The output on the CRT conscle terminal is the major visible
part of the CGCS's Operator Interface.
which are not even part of the Operator Interface proper con-

tribute to the console output (compare Fig. 9):

(1) Fixed Part (Lines 1 through 16 or 17):

(2)

(3)

Timer Task (FXTIME):
Actual and system time.

Command Interpreter Task (RXIROM):

Table frames, text output, date, and run identifica-

tion.

Command Executor Task (CMMDEX):

Macro command name (if set); operation mode.

Measured Data Output Task (MEASDO):

All numeric values; Debug output in line 17 if acti-

vated.

Command File Input Task (CMFINP):
Macro command name (if cleared).

Scrolled Part (Lines 17 or 18 through 21):

Command Interpreter Task (RXIROM):

Operator entry echoes, various messages.

Command Executor Task (CMMDEX):
Various messages.

Command File Input Task (CMFINP):
Various messages.

Diameter Controller Task (DIACNT):
Various messages.

All other tasks:
Disk, I/0, or system error messages.

Prompt Line (Line 22):

Command Interpreter Task (RXIROM)

- 238 -

Several tasks some of

5.3 The High-Level Growth Controller Software
(4) Input Area (Lines 23 and 24):
Directly written to by the Terminal Handler.

The numeric values written to the console are, in general,
given as physically relevant magnitudes, i.e., as properly
scaled floating-point numbers. The following dimensions apply
to the various items:

* Diameter, Lengths, Positions: Millimeters.

* Temperatures: Millivolts (thermocouple voltages).

* Lift Speeds: Millimeters per hour.

* Rotation Speeds: Revolutions per minute.

* Weights: Grams.

* Differential Weight: Grams per minute.

* Powers, Contact Device: Arbitrary units (0 ... 100).
* Gas Pressure: Pounds per square inch.

* Densities: Grams per cubic centimeter.

$5.3.1.2 Auxilia I/0 Routines

The tasks which request console input or generate console
output (compare chapter 5.3.1.1) use, in general, the FORTRAN-
iRMX-80 Interface I/O routines whose names start with "FR..."
to write to the screen, or the routines discussed in chapter
5.2.2.9 if they also write to the documentation file. All
these output routines require a screen position information
which is passed in the first parameter of the subroutine
call. Some locations on the screen are, however, very fre-
quently written to, and it was advantageous to provide special
routines for these output actions which have the screen posi-
tion information implicitly built in. cCalling any of these
"shorthand" routines spares the programmer entering one par-
ameter, and it abbreviates the actual program code. Similar-
ly, some input actions like the checking for the input string
"Y(es)" can expediently be handled by dedicated routines.

The following routines (and several others) are kept in the
assembly language module AUXASM. With the exception of
PRETTA, they may be called by any task performing output.

- 239 -

A e Y s b v

oed®

\.
A

Ay -:‘-ﬁ

BN S
-, re ',,".'

J

FLI
ACCSOMN
E s R

’e

2

a > . ¢
>, -
> n}ﬂ‘v_ \.’\.'.!.

X

X
AR

iy

TN

SRR
iy «’&"Af".’ -:'J-i %

5.3 The High-Level Growth Controller Software

PROMPT: This routine writes the string which was passed to it
as a parameter left-adjusted into the input prompt line
(line 22).

MESSGE: The string passed as a parameter to MESSGE is written
into the scrolled screen area.

ERRMSG: Similar to MESSGE, the ERRMSG routine writes to the
scrolled screen area, appending a "beep" in order to at-
tract the operator's attention.

PRETTA: This routine writes "- press "RETURN" key to conti-
nue" to a specifiable screen location (usually in the
prompt line), and waits for any input on the console.

Three additional I/O routines are kept in the FORTRAN module
AUXCOM:

BEEP: This routine simply issues a "beep" on the system con-
sole. It takes no parameters.

CLIPRL: The subroutine CLIPRL overwrites the input prompt
line with spaces. It does not take any parameters.

CHKANS: This routine is a LOGICAL Function. It returns
" TRUE." if a valid input line beginning with an upper- or
lowercase "Y" was entered on the console, and otherwise
" FALSE.". CHKANS needs a LOGICAL argument which is re-
turned ".TRUE." if an empty line ("Return" only) was en-
tered, and otherwise ".FALSE.".

5.3.1.3 The Command Interpreter - Task RXIROM

The Command Interpreter task has a special position among the
CGCS tasks in several regards:

* It is, in fact, the continuation of the ROM resident part
of RXISIS-II, RXIROM, and the first task to come "alive"
in the CGCS. Although it is "unofficially" referred to as
"COMINT" within the program source modules, we will use
here its "official" name RXIROM (which is also reported,
e.g., by disk error messages).

* It performs the system initialization and activates all
other CGCS tasks.

* It is the only task which requests and processes operator
input (but not the only task to generate output).

- 240 -

o~
i~ \::
ﬁ:jy 5.3 The High-Level Growth Controller Software
)
‘ - The Czochralski Growth Control System is invoked under RXISIS-
_ . ITI by the command "CZOCHR". RXISIS-II searches for and loads
K a program module "CZOCHR.RXI"™ whose only purpose is to vector
b control to a special code sequence in the RXISIS-II Command
(OO Line Interpreter which replaces the file name extension ".RXI"
:5 e by ".BIN", provides the resulting module name "CZOCHR.BIN" for
" the ROM resident bootstrap routine, and restarts the system.
v [The bootstrap routine is part of the task RXIROM; normally, it
Vo loads into RAM and starts RXISIS-II. Being entered in the de-
h scribed way, however, it loads the module "CZOCHR.BIN" rather
O than "RXISIS.BIN" from disk drive 0; "CZOCHR.BIN" holds the
b entire resident code of the CGCS plus preliminary initializa-
e, ¥ tion values for some data locations, and a special start mod-
ule which is loaded into the memory area which will later be
. = used by the Command Interpreter overlays. Control is passed
IEN to this initialization code when the program file was success-
ﬁ ' fully loaded.
.'J .
WEEN The start module is entered via the assembly language routine
° - CZINIT which first sets an internal flag of the Monitor which
R enforces a duplication of the Monitor's CRT output to the
e printer. (This measure provides a permanent printed record of
N an inadvertent entry into the Monitor program which might
:} happen due to software or hardware failures.) CZINIT also
» . resets a flag which controls the activation of the Monitor
¢ i from the console keyboard. (This is why the Monitor can be
entered under RXISIS-II but not from the CGCS by pressing the
o "Break" key of the console terminal.) Subsequently, CZINIT
s builds a new task stack close to the top of memory since the
MR stack of RXIROM is too small. It stores a program version
) code in a reserved memory location; later, a version code
which is loaded with each overlay will be compared to this
-2 s datum in order to ascertain that only matching program modules
A are loaded. After some initialization calls to FORTRAN and
g FORTRAN-iRMX-80 Interface routines, CZINIT passes control to
& g. the FORTRAN subroutine FXUSIN.
-~
>« FXUSIN initializes the digital I/O interface and several con-
’ - trol structures which can be accessed more conveniently via
(§ S FORTRAN than via assembly language. It calls the (assembly
SO language) subroutine TESTHD which checks whether an A/D con-
‘S verter board is installed in the system by initiating a con-
N ~ version and checking the status byte for a "Conversion Ready"
By bit which is returned by the A/D converter. The Variable TEST
! is set to -1 if no A/D converter response was detected within
*53;; a defined timeout period; otherwise, TEST is returned with the
T value 0. (This check is important if the CGCS software might
,Q be run on hardware which does not feature the A/D and D/A
'?‘~a interfaces. In this case, practically all system resources
.: = would be spent by the task ANACNT for waiting for the A/D con-
" - 241 -
AR
G
W
.
2L
i‘\ -
“
- - U N A "u) > % | T e Y T Y D VL T Vo B A TR T 0 LT
G D e L O e S R R T

B
Y

o
y
o

"o
.}? 5.3 The High-Level Growth Controller Software
S
n.q verter to finish a conversion, which obviously never happens
| if there is no A/D converter within the system. The CGCS
N would, therefore, be practically locked in such a test envir-
;ﬁ onment. The value of TEST is later used for bypassing the
o analog input and output routines within the task ANACNT. Note
g that TESTHD is called before ANACNT is created.) Subsequent-
e ly, FXUSIN calls the assembly language subroutine CREATE which
V) is, similar to TESTHD, part of the module CZINIT. CREATE ac-
NN tivates all tasks of the CGCS, which can only be done safely
En after the above initialization, and makes unused memory (in-
AN cluding the old RXIROM stack) available to the memory pool of

:fa the iRMX-80 Free Space Manager. After the return from CREATE,
' FXUSIN provides a sign-on message (plus a message referring to
a "Test Mode" if TEST has been set to =-1), and loads the data

{\: overlay "CZOOVD" from drive 0.
\-
r$~ Similar to "CZOCHR.BIN", "CZOOVD" is loaded only once during
AN every growth run. "CZO00VD", which holds the (initialization)
- values of practically all system parameters, is kept separate
"® from the main code module on purpose. The preparation of the
IR CGCS program modules is a lengthy and complicated procedure
W which would have been indispensable after each modification of
- a system parameter initialization value if these data had been
S}Q kept within "CZOCHR.BIN". Since it is very likely that numer-
L ic parameters require changes more frequently than the program
é code, it was preferable to load them from a special data over-
'}_ lay which can be modified and configured relatively easily.
‘s
*;2' The auxiliary routine LOVLAY which is exclusively used by

RXIROM loads overlay modules into RAM. (The information where
an overlay is to be loaded is part of the overlay program
file. It is, therefore, sufficient to specify the name of the

.

s

I
1 4
A
P

O

file to be loaded.) Several safeguards are provided which

AN permit to trap the potentially disastrous locading of improper
NN files:
'\:‘-
v * The data on each disk file and, in addition, the program
LN code itself, contain checksums which are validated by the
,g. Loader task. Any damage to a program file is therefore
o very likely to be detected and reported by the Loader.
nﬁw LOVLAY returns a message "Defective program disk" in this
e case.
oy

¢ * Each overlay contains memory locations which hold its name
;Q; and the program version code. LOVLAY reports "Software
g damage likely - reset the system" if either the overlay
A% name or the program version loaded with the overlay do not
s match the expected data. (It is important not to mix
‘Cj modules belonging to different CGCS versions because all
L' overlays access code or data within the resident part of
& &
Lt - 242 -
Ay
@
A

0

i

l.'.

> ¥ Y AL ST T R L NSV

=K L 9 50 17, Wy 19 49, X O 3 WAy .y A A T
A Mot Y CRA .90.' M‘n,l‘ . A ':. N X l.:.t‘n DS IR N e M K |.'a‘l.- B RN 00 Oy O O (3 X | ..'. 0 8,070,41 (N

X N»E,
» .f\; N
v

'

r e
A S
AES A

Lo 5.3 The High-Level Growth Controller Software

o

the CGCS. Since the absolute address of a routine or a
s data location may change due to system modifications, an
overlay routine may call improper code or access wrong
data if its version does not correspond to the version of

7
,
s B 'l

"I

Aﬁ{-i the resident code.)
RYRAS
L Note: Do not disregard error messages returned during overlay
", !, loading. A potentially disastrous effect of a defective over-
NS lay may show only after a considerable time. It is always
o dangerous to copy single overlay files to a work disk, or to
oSy .. exchange work disks inconsiderately. There is, however, no
N danger if a Disk Error 24 is reported during overlay loading,
AR and if the defective disk is replaced by one which holds the
same program version.
AOA
':$ o In very rare cases, a Disk Error 120 - Unable to Open File -
2 may be displayed when the system attempts to load CZOOVD.
5:”h This may happen if the operating system is overburdened during
KNt T the start phase, for example, if a key is continuously being
r pressed on the console terminal. In this case, the memory

A

*
.
v ‘e
]

,h.,“,

pool has not been initialized yet when memory is requested
from it by the Loader software, and the above error condition
ensues. The "Defective program disk" message may be ignored
in this case, and loading may be retried by pressing "Return".

Pt Sl Rt 4
L A]
N W

h e Y

The start routine FXUSIN displays the creation date of the
data overlay CZO00VD (which is also an indication that this

o
:2 N module was loaded properly), and requests the current date.
O The date should be entered in the format shown in the prompt,
o but any string of 8 characters which starts with a digit is
P accepted. The date information is stored for reference pur-
i) l} poses only; it will be used on the console screen, in the
y N documentation output page headers, and in the header records
v I of the Data files. After the date, the current time is re-
'5, quested from the operator; the system expects two or three
K ﬁ positive integer values as an input, separated by colons
bos (":"), spaces, or any other non-numeric characters. The time
h;’ should be entered in 24 hours format; zero is assumed as a
S seconds value if only hours and minutes were specified. The
A j internal system time starts running - yet invisibly - when the
.- subroutine FRSETT is called after the "Return" key was pressed
‘}i . to enter the time information, and the absolute time is set to
- ;i the value entered (compare chapter 5.2.4.1). Finally, FXUSIN
o requests a "Run Identification" which can be any arbitrary
®. string up to 20 characters long. A blank run ID can be enter-
JE-; ed by simply pressing "Return".
‘AN
:ﬂi FXUSIN calls now the subroutine TIMLIN which is part of the
- start code in the future overlay area. TIMLIN generates the
:; > date, absolute time, run ID, and system time display in the
. - 243 -
e @
o
l.g'
T
. -
A %
b

' S 7] e P S | (MY D PR T T R C W i y iy N)) N A"
::'f:"!-. !M‘.\':':‘.k . NI 'G‘n’l'l"‘.‘-’a‘:’t Q'o ety !‘n‘_.'o‘..".:':ﬂ et :'0':‘:‘:':‘:'.‘3'0'!'.‘:'-‘.' i LONEIEALADAAAONG DG S e

L3
l"l{ 9

rr
1’{;.’5
it NN

&
LA

»
a s

5.3 The High-Level Growth Controller Software

P
1 2

.i .' “

.

top screen line which will be shown throughout the entire
growth run. The operator can accept or reject the data dis-

i~

o played; this is, by the way, the only occasion within the
'f{ entire CGCS software where a plain "Return" is interpreted as
N "Yes" (otherwise, it is treated as "No"). Depending on the
o outcome of this query, FXUSIN either loops again through the
WY date, time, and run ID input section, or it returns to CZINIT
V) which passes control to the resident portion of the Command
',; Interpreter, i.e., to the routine COMINT.
-'\.-
ot COMINT starts its operation by writing the output "frame" to
O the console terminal which is eventually filled in with the
e output of measured data. This is done by the subroutine FRAME
which resides in the overlay CZOov08. This overlay has to be
Vit loaded by COMINT; it overwrites the code of CZINIT and FXUSIN.
,iqj (This and the following initialization can, therefore, not be
uQ} done from FXUSIN which would otherwise be the logical place to
‘}; do them; there is no way for a routine in an overlay to call
ﬁﬁ directly another overlay resident routine which uses the same
'@ physical memory locations.) We will discuss the subroutine
= FRAME later which is also called upon a RESTORE command.
‘..’:.
~- The next two routines invoked during the initialization of
e COMINT reside in overlays CZOV16 and C20V19, respectively.

. DOCUMT permits to activate a Documentation output, either on
Pt the printer or on a disk file, and it allows to specify an
- . interval for dumps of measured data to the Documentation out-
oty put. INIDAT permits the initialization of some process para-
S meters. Both routines will be dealt with later.

”

2 COMINT enters now its infinite loop which starts with the
phn output of the prompt "Please command:" and the request of
J operator input. The input routines transfer an input line of
A up to 80 characters into an internal buffer when the operator
s terminates his entry with "Return"; no data are available to
R the CGCS before "Return" is pressed. First, COMINT attempts
St to transfer the first six characters in this input buffer to
P the CHARACTER variable COMMD. The LOGICAL variable STAT is
LI returned ".TRUE." by the STRIN call if and only if an empty
.- line was entered ("Return" only). COMINT repeats its input
- prompt in this case, and waits for the next entry. Otherwise,
A the first character of the input line is checked and the input
S rejected if it is a space (the command keywords must be left
j;& adjusted within the input line to be processed properly).
oy The presumable command keyword in COMMD is now compared to
1 (currently) 25 keyword strings, corresponding to the 24 Inter-
f?@ nal commands (the HELP command has the alternate keyword "?").
1M Control is vectored to the appropriate sequence within COMINT
B0 if a matching string is found. (The string comparison routine

2)

L - 244 -

~ ¥ oI LTS e P T TN T S AT 0T TP BY, T B o e i Ag R T Toa ot Py Toy BT W, W eV, 00 ,
: W Moy, % DDA % . AN \V‘ Tyt e PRI KK

U
EaNn R PN '..q nY, A0, TR W, 1N, XM ... ‘-‘ln".c' s DOEN]

E [s
[
'}"-:;

..4"‘

GO
N

/ o
)S{Nf‘n,'v i T
‘._5

w -

Py
- -
1

- -

ST

s"'. 4- 2
-~ .

A

-
o

e {,- Y
. A-I."L '.o.

. s -y
vy l.‘ l.’ I" l.‘ tk
« AR 2

o) -
20 'f‘t <51.&;‘l\

-2
r3

»

oy
X

'3

@

-

vy

) "~
::"::"::"::'.:".I ‘.0"’1, Tty

5.3 The High-Level Growth Controller Software

FRCMPS uses the character "|" as a wild card symbol which can
be matched to any character (compare chapter 5.2.4.3); only
four characters are compared since the keyword strings consist
of four or less characters only.) The command entry is inter-
preted as the name of a Macro command if no matching Internal
command was detected. A Macro file name string is created by
the assembly language routine MAKEFN which appends the file
name extension ".CMD" at the logical end of the presumptive
Macro command name (which is either after the sixth character
of COMMD, or at the first space in COMMD, whatever happens
first). COMINT tries to open the Macro file for reading, and
closes it immediately, in order to test whether a file with
the specified name and the extension ".CMD" does exist. This
is the case if no error status is returned by the FROPEN call:
FROPEN will return an error value of 13 ("No such file") if no
Macro file was found with the specified name, most likely due
to a mistyped command. An error value of 4 ("Illegal file
name") may be returned if the command input contains non-
alphanumeric characters, which may also happen due to typing
errors. COMINT returns to the beginning of its command loop
with an appropriate message in these cases; the default disk
error message is output if any other disk error was detected.
If a file with the proper name was found, COMINT assumes that
it is a valid Macro file (this fact will be checked later):
it requests an operator acknowledgement ("Execute Macro com-
mand ...?"), and sends a command message to the Command Execu-
tor which eventually will start the execution of the Macro
command.

In general, all commands which may be recorded on and issued
by a Macro command file are executed by the Command Executor.
These commands are "sent" to the Command Executor by means of
messages, buffer areas in RAM which are made available to the
receiving task by the iRMX-80 operating system. Command
messages have a "type" value of 161 (the message "type" is
simply a safety feature which guarantees that correct data is
received). The first byte of the command message proper
determines the command type (in our case, 30H stands for
"Macro Command"), and the remainder of the message holds
parameters of the specific command, up to a length of 13
bytes. The same format, with two additional leader bytes
holding the command time, is used to store commands within a
Macro file; compare Appendix 12. Using special message trans-
mission routines of the FORTRAN-iRMX-80 Interface Program
Package permits to easily merge command messages from dif-
ferent sources (namely, from the Command Interpreter and the
Command File Input tasks) and to queue them at the Command
Executor's input for processing. After having been accepted
by the Command Executor, the command messages are passed on to

- 245 -

s o

Ton

~ w " Prlats ma Agm r "Jl" ".(l(" W
AN ﬁ!‘a »'l".'c‘!:: .h".'o'!'o'. .. X ke LGN WY Nal Sl

Y 0 AN Vs
Mo X l"-.'- X '.l'c~l'-,. 9, v':‘fc n {

A GO SLY
WA R ATl

4904

.''.
A\

jnj 5.3 The High-Level Growth Controller Software

'y

AOG) the Command File Output task which records them in a Command

i Output file (Fig. 17).

_

'. . :

Aolg
i
.\f'i
Y

s

VT ,,,

V) —— -

CONSOLE "COMMAND |
\-55 TERMINAL ~—— INTER- K
W {GPERATOR) . PRETER N

- N J— — 55—

pis COMMAND | COUMAND = (MACRO

y "- - QUTPUT : + COMMAND)

DK —— ! 1

_ MACRO L COMMARD V//// | | ! ;

,.._':_.: COMMAND) | - |_INPUT : ! t
S | I I I S
o
® Tl })

e
.\ ‘ CRYSTAL GROWTH CONTROL ROUTINES

VIR |

IR

5 S -

o

'\}..

,:{‘:

' 7

%) Fig. 17: Command processing in the CGCS.

ﬁfz
J,‘\-

,az Most of the Internal commands are processed in overlay resi-
", dent routines which we will discuss later, rather than within
n . . .

‘) the main Command Interpreter routine COMINT. This approach

oy helped to keep the resident COMINT code concise. Only the

";: following commands do not require overlays to be loaded:

-

'v.'f\

o EXCHANGE: This is considered an emergency routine which must

.%} be called if a disk has to be changed due to any kind of
“ ¥ defect. It would not make sense to load an overlay from a

,’" possibly defective disk. 1In order to prccess the EXCHANGE
b command, COMINT calls the FORTRAN subroutine XCHDSK which
N closes all files on the specified disk, waits for an ope-

. rator entry which indicates that the disk has been ex-

) changed, and re-opens all output files on the new disk.

oL END: An End of Command Record code (7FH) is sent to the Com-

I , mand Executor if this command was issued.

ok

{&r QUIT: The FORTRAN subroutine QUITCM which is invoked by

ﬂ& COMINT disables the Macro command file input (by resetting

1.3 the proper I/0 flag) and the Timer #2 which controls the
4]

Lt - 246 -

.f::.)"

o
l.f
200
@

a8

T

IS

K

W A I OO0 9,) MMM N A RN AR SN ONONINONOBONE
.l.‘.oﬂ‘At‘.'It',03"!3"""'?"’0’“‘!"l!"0:..\\!‘.’:.."Q’.'!‘llb!’.0.‘-‘1‘...:‘v"l‘""i“‘i."l."'?"‘o N U UNON UK IR AN ST NG !

_ >
iy] LI

-{.r e ﬂ‘ b 'j]‘t)‘!}'ﬂ
offe, Tl 3

- 5.3 The High-Level Growth Controller Software

l{l

F

—
-

execution of Macro commands. It fakes a timer alarm by
setting the flag TIMINT, and waits for two iRMX-80 time
units (100 ms) to permit the Command File Input task

\E CMFINP to run in response to the faked alarm. CMFINP
1:? ;. closes the Macro command file, clears the Macro name on
‘:H) the top line of the console screen, and issues a corre-
s sponding message if it finds the I/0 flag reset.
) L
f,;;{ DUMP: The subroutine DUMP which is called immediately upon a
SOl DUMP command sets a flag (DUMPFL) to .TRUE. whose status
s is periodically checked by the Command Executor (compare
:i:;t chapter 5.3.1.4.6). The Command Executor, in turn, in-
P L itiates a Data Dump to the Documentation output when it
finds this flag set.
L
;?:tﬁ All other commands are handled by the overlay resident rou-
o tines. 1In order to avoid loading an overlay which has already
WOl been loaded by a preceding command, COMINT checks the value of
N the variable OVRLAY which is set by each overlay to its re-
‘."’ spective overlay number. (This is not explicitly done by
2% program code but by assigning a value to OVRLAY with a BLOCK-
SO DATA program; this value is stored in OVRLAY when the overlay
5; o is loaded.) The COMINT overlays are discussed in the follow-
i) ing chapters in their numerical order which has been deter-
L mined essentially by historical reasons.
(B
wy
o 5.3.1.3.1 Overlay CZ20V0l - Module SETPAR - Commands SET and
v CHANGE
o
%)' The subroutine SETPAR receives the MODE switch as a parameter
) !- which distinguishes between the SET and CHANGE commands, and
'ﬁgﬂ’ it returns the LOGICAL variable LOAD. LOAD is returned
'? ".FALSE." if SETPAR can complete the processing of the com-
R mand, i.e., if the command applies to one of the nine Internal
Iﬁ - parameters (diameter, three temperatures, four motor speeds,
a and power limit). Otherwise, LOAD is ".TRUE.", and COMINT has
'ghi- to load the overlay CZOV02 in order to complete command pro-
- cessing.
-%) SETPAR re-scans the command line originally issued to COMINT,
e searches in it for the first space, and then for the first
Nis ‘o three alphabetic characters after the space, in order to de-
!ﬁ termine the parameter which is to be SET or CHANGEd. An ex-
AN plicit request for a parameter is issued if no suitable data
QE o are found in the input line, and a new input line is read and
oy parsed for its first three characters. The command is cancel-
AN led if this second attempt is also unsuccessful. In either
;f - case, the input line pointer is moved back to the beginning of
v - 247 -
LGS
~o
‘\" “
."n'
-’
®
(S

’ » - »

L} ! cw » r L ‘J" [N " -' -------- ¢p r -*,- .. L ! 2 - "'
""'..’0',:‘. 0" VA !‘! 1] -‘0"":‘!’:‘0- .‘l o.- .Q.n i} ! a u_o.' |~ Mg B M 2l I X v"‘:"‘:’.,:’l.n X l_.“!‘lfzg‘\‘ .:'0‘:":.*-:'! a‘! 2‘0‘_:‘!‘.“0‘:’0‘:‘

S

[

[4

b
&

N
1NN
o 5.3 The High-Level Growth Controller Software
>
o the parameter string, i.e., the next input command will read
the parameter string again unless a search option is used with
A the input routine call. The three input characters are now
o compared to the nine mnemonics which stand for the primary
o parameters (three characters are required because the third of
i them must be a space in order to match a valid mnemonic).
o SETPAR is left immediately, with LOAD set to ".TRUE.", if no
V) matching mnemonic is found.
L%)
Qj The routine scans now to the first space after the parameter
o string and tries to read a valid floating-point number from
52 the input buffer. This number will represent the target value

;. of a SET command or the increment of a CHANGE command. A
proper value is requested if no numeric value is found after
N the parameter string, and a new input line is read in this

RO case. Either input line is scanned for the next (floating-
&k point) number, and a transition time entry is prompted for if
iﬂ. no such number or a negative value is found. The command is
e regarded cancelled if no valid input is entered after it was
“ explicitly requested. A similar approach is used within all
s Command Interpreter routines which process commands permitting
- the entry of command parameters in the input line.
b
- In order to generate an operator confirmation prompt, SETPAR
o determines the final value of the modified parameter. This
‘ value is equal to the input value for.a SET command but must
) be calculated as the sum of the current parameter value and
o the specified increment in the case of a CHANGE command.
(?: Internally, the setpoint and actual values of the primary
NN parameters are stored as scaled two-byte integer (INTEGER*2)
qﬁ values. This was done because analog data are input and out-
el put as integer values; the controller routines operate on
‘), integers because integer algorithms are faster and require
Lo less code, and data recorded in the Data file are also in
rq& integer format, which reduces the Data file size by a factor
> of two, compared to floating-point numbers. The physically
e relevant (floating-point) data which are displayed and entered
Vi on the console are obtained from the internal integer values
.: by multiplying them with appropriate scaling factors.
b One peculiar property of real-time systems must be considered
j i: at this point: Unlike conventional computer programs, rou-
M'Q tines which are part of a real-time system may not freely read
o, and write data. This is true because multi-byte values are
- @, usually stored and retrieved in sequences of several machine-
s code instructions. The scheduling of system tasks is, how-
it ever, hardly predictable in a real-time environment, and a
o task might be interrupted, e.g., during a multi-byte read, by
- another task which might write to the same memory locations.
*ﬂ Although the actual value stored in these memory locations
R - 248 -
) :_":.
o
o
L 20
ua
s
‘-

e I)
J'-J'f .rff."f
‘\'.AJ‘M'I'.J-L.L > "La.._.a.,g.

.\ 4 Ran fav et gt apt Lat gar jhe - & '~ Wy Wl v a v - wwmmmmvw-—j

oo

e::ﬁ

¢!

i. ;

)

e W

Q-j% 5.3 The High-Level Growth Controller Software

%l . might change only slightly, a totally unusable value might be

{ ! retrieved by the interrupted task. Such an event may be rela-

A tively unlikely but nevertheless disastrous; the following

- safety measures are taken within the CGCS to prevent it (com-

o pare also chapter 3.1.4):

'5) (1) Some data areas are protected by access control routines

v (FRACCS and FRRELS) which permit only one task at a time

M, 3 to read them or write to them.

t

:ﬂ- (2) The system Variables are implicitly protected by the prop-

‘$ & er choice of the priorities of tasks which access thenm.

Y They are only written to by the Command Executor which has
a very low priority and can therefore never interrupt the

e - execution of a higher-priority task which might use a

;“'}: Variable. The storage of the Variables is protected by

)

using a special routine (STODAT) which temporarily dis-
ables the system interrupts.

T4t

(3) Values which have to be read only can be retrieved reliab-
ly by reading them twice. This process can be repeated
until both reads result in the same value.

« ‘r";t} "l{l
o

T
* ol

fﬂ : The latter approach is the one chosen in SETPAR; a counter
o prevents the system from being blocked in the unlikely case
' i that a matching value pair is never found.
D)

SETPAR checks the final setpoint for negative temperature or

‘j(t power limit values, and requests an operator acknowledgement.
3 s The output line has, unfortunately, to be built relatively
K awkwardly in a buffer (LINBUF) because the output routines
4 which write also to the Documentation file can only accept a
< complete line of output (compare chapter 5.2.2.9).

F‘ L]

o Upon a positive answer of the operator, SETPAR builds the
&,p command message. The command type byte holds the encoded
N command mode (SET or CHANGE) and the target parameter; the
N input value is converted to an INTEGER*2 (which is checked for
e a potential overflow), and the transition time value which was
;w’ specified in minutes is multiplied by 60 to hold a ramping
{Z " time in seconds. The command message is dispatched to the
"ty Command Executor, and SETPAR returns to the resident COMINT
"_S "J code.
I‘ -
. .
s
)
)
P 0.

~ 249 -

L2 @ RASSSNSANG 22
VA

-

\. V \- o W

n LB Y. " ") n‘(
l,"-_l'!“'o'l':‘:'q ..:‘\.; LA A2 AL ‘..n‘l'- .:‘.; 1,905 l‘v'i‘A .\-.l': W, v l"»‘l:’lk 9, %050,

£

L et Sall Radh SalPal Sal S vt‘*‘T

x
y
: b4
N T e)

L05@
%, :’:’:‘4’

5.3 The High-Level Growth Controller Software

7l

-

5.3.1.3.2 Overlay CZ0V02 - Module SETVAR ~ Commands SET and
CHANGE

[y
»

&
EVd
'l.'

x r'»

SETVAR is invoked after a SET or CHANGE command for which none
of the Internal parameters was specified. The CGCS assumes in
this case that the command applies to a system Variable, i.e.,
to an item in a list of named memory locations. SETVAR re-
ceives the input buffer from SETPAR with the pointer at the
first character of the presumptive Variable name; it reads a
string of up to 10 characters into an internal buffer, termi-
nating the input action when a space (i.e., the end of the
Variable name) is encountered. The name string is converted
to uppercase, and passed to the assembly language routine
FINDAD.

] 'y '.
‘l .l
28 e

o)
5

04

s/

Celea

14
»

.‘,.‘

FINDAD compares the presumptive Variable name in VARNAM to a
list of names kept in the specially formatted file CZONAM.Vmn,
where m and n are the major and minor program version numbers,
respectively. Each entry in this file holds a Variable name
(1 to 6 alphanumeric characters long, but the first character
must be alphabetic), the Variable type (one- and two-byte
integers or four-byte floating-point numbers), encoded with
the number of elements if the Variable name refers to an ar-
ray, and the Variable address or the start address of an array
(compare Appendix 12). FINDAD checks the index of an array
element which may optionally be passed in parentheses immedi-
ately after the Variable name, and returns the actual address

S,
AN,

,

s

i i
i O

v
Soa e
a

.
Y 4
i
LI

‘,

XY £t

u\j of the Variable or array element, and a type code which is
e positive if a valid entry was found in the CZONAM file, and
i:} negative in case of an error.
~

;" SETVAR checks the type code returned and issues an error mes-
~) sage if necessary; otherwise, it retrieves the current value
Y of the Variable. This is done with a call tc the assembly
}}- language subroutine PEEKDW which reads the four bytes at the
L7~ address passed as a parameter repeatedly until a stable result
"ﬁ; is obtained (compare chapter 5.3.1.3.1). The four bytes read
K may have to be converted to a floating-point number according
‘Q, to the type of the Variable: the result of this operation is
-ﬁﬂ later used to display the current and the final values of the
“5' Variable. Subsequently, the routine tries to obtain a SET or

b4

):&

CHANGE final value and a transition time from the input buf-
fer, and it issues corresponding prompts if no data are found.

&

&

- Similar to SETPAR, SETVAR checks integer values for a valid
mf{ range, builds a command message if the operator acknowledge-
A ment was positive, dispatches the message, and returns to
DA COMINT.

b \- . '.‘
..
0.,
- 250 -

o

A fl.n
%)
N4 “
o,
L

- b

2

J AR Y AL LTS LSRRy e N P SRR B A ® o " Np % “ar - A
'-.‘::.!':..l:‘h\to'i 6 ."o " ')l .‘. .u‘nﬁ ! RO S At 0 0 o i ANy ‘.0'.,:'{ ,.0,}0.!‘"‘“.0~,"0.-:90 . A":“!l “,:'0‘!‘0’:‘"

b

"7:'\: ‘

e e

:i:'f 5.3 The High-Level Growth Controller Software
SR
‘ N “ 5.3.1.3.3 Overlay C2Z0V03 - Module COMMEN - Command COMMENT
:}: = The routine COMMEN inserts a comment line into the Data file
- if such a file is active.

A.I*_\-/ -":

jﬁ . COMMEN scans to the first space in the original command input
' line, and tries to read valid input from the remainder of the
C) l command line (to receive any comment which was entered to-
AR gether with the COMMENT command). A corresponding prompt 1is

....v
L R
/4"

«
»

issued if the command line did not contain any data except the

keyword. COMMEN returns immediately to COMINT if no Data file
- is active (i.e., IOFLAG(2) is reset); otherwise, it provides
operation mode, time, and length grown information in its
; output buffer, sets the first byte of this 128 byte buffer to
.o -1 to indicate a comment line, and writes the buffer to the
NI Data file. It is essential that a full record (128 bytes) is
) appended to the Data file to maintain the file's special for-
mat (compare Appendix 12).

-
x

o
o
(7.7 e 5.3.1.3.4 Overlay CZOV04 -~ Modules MENOUT and CLRSCR - Com-
SO mand HELP
Ai} - n This overlay provides the Help menus of the CGCS in response
{ a to the commands HELP and "?". It writes in random access mode
Tairt into lines 17 through 21 which are otherwise reserved for
:ﬁf) scrolled and Debug output. The latter is immediately disabled
s - when MENOUT is entered by resetting the flag ENDBGO. Although
N the output routines do permit to write over the scrolled area
- in random access mode, this output remains on the screen only
%) I until data is output again in scrolled mode. Any system
iy message which is issued while the HELP command is executed
ﬁ%"’ will therefore preempt the display of the current Help menu.
‘{} - MENOUT first clears the five lines of the scrolled area by
" VO overwriting them with spaces (in the subroutine CLRSCR), and
® outputs a quick menu of Internal commands which is built right
o into the program. The next help screen optionally displayed
p EV by MENOUT contains a list of Macro command names which are
ﬁ& derived from the disk directory of the disk in drive 0 (file
: - ISIS.DIR). The directory is scanned for all valid files with
N an extension ".CMD". Up to 40 Macro files can be listed on
RS one screen; if there are more Macro files on the system disk,
:% MENOUT pauses and continues its output when the operator
I pressed the Return key.
'-'»': ~
2}5- After displaying the Macro commands, MENOUT permits to request
A more information about the Internal commands. If the operator
: B accepts this offer, MENOUT displays again the short menu.
2

- 251 -

LS Y

X
&

%
55!

ol
e e e p e e e e e e
»Y e f

P AT TN AN

ERRAERE AN Sl A A A e A AR SN
o " ‘.j\(\ HERE TN T e A e T A A e S N

L by
5% %Y

Qofag

x

, L]
S

P

[y
3

e T @SS
P

»

TS e
AR

5.

3 The High-Level Growth Controller Software
(The initial menu display sequence is also used for this pur-
pose; a LOGICAL variable controls the continuation of the
execution of MENOUT after the menu was output. This approach
was chosen rather than a subroutine call because it is more
program code efficient, and because it does not require awk-
ward measures like COMMON blocks or lengthy subroutine param-
eter lists to make variables available to all routines in-
volved.) Simultaneously, MENOUT opens the help file CZOMEN
for reading which holds five lines of text for each command.
There are two modes in which the contents of CZOMEN can be
displayed: One mode steps through the file, displaying record
by record, while the other one scans the file until a keyword
entered by the operator is found in the first line of an en-
try; only this entry is displayed. Both modes can be combined
since an empty input line ("Return" only) always results in
the next record being displayed, whereas the first four char-
acters of a non-empty input line are used to search through
the file CZOMEN. Multiple entries can therefore be searched
for in one pass, provided they are in ascending alphabetical
order. A single-character entry (nominally, "Q", but any
other character has the same effect) terminates the search,
and MENOUT is exited after closing the menu file and re-en-
abling a possible Debug output by setting the flag ENDBGO.

5.3.1.3.5 Overlay CZ0V0S - Modules OPMODE and CLRSCR ~ Com~
mand MODE

The operation mode setting routine OPMODE displays a mode menu
similar to MENOUT, and permits the entry of a mode number.
The number entered is compared to the current mode and checked
for its validity:; corresponding messages are output if either
the current mode was chosen, or if an illegal mode number was
entered. OPMODE permits to re~select the current mode; al-
though this has no effect whatsocever on the current growth
run, the command is recorded in the Command Output file and
may be effective during a later execution of this file as a
Macro command. (It may also be used to trigger a data dump on
the printer and in the Data file; there are more straightfor-
ward methods to achieve this, though.)

The operator is prompted for an acknowledgement of his mode
entry in any case. OPMODE requests an extra acknowledgement
(with "OK" rather than "Y(es)") if the mode is changed from
Monitoring (mode 0) to any controlled mode, or vice versa, in
order to prevent the probably disastrous effects which an
inadvertent change might have. The newly entered mode is
encoded in a command number, and the command message is sent
to the Command Executor.

- 252 -

ME ™~

P,

Las AN

<5

"

f

T

-

[ol el

RAE

PR R

[Pk il ik g MRS
o T DR RN

| 0

- =

5.3 The High-Level Growth Controller Software

5.3.1.3.6 Overlay CZ0V06 - Module DEBUGO - DEBUG Commands

The six DEBUG sub-commands =- Continuously, Display, Modify,
Off, Resume, and Suspend - are handled by the two overlays
CZ0V06 and CZO0V07 (modules DEBUGO and DEBUGl, respectively)
which are concatenated similar to the two overlays for the SET
and CHANGE commands. The command execution is commenced in
the module DEBUGO where the command input line is first scan-
ned for the DEBUG mode switch, which is any one of the letters
c, D, M, O, R, and S. As usual, a mode switch is requested if
none or only an illegal one was found.

The processing of the DEBUG commands requires various inter-
pretations of the input line, depending on which sub-command
was issued. 1In order to facilitate this processing, the en-
tire contents of the input buffer are read into an internal
buffer (LINBUF) from which input items are retrieved. The
contents of this buffer are shifted to the left by one item
after each successful input operation, which permits to read
the next item always from the beginning of the buffer. (Items
must be separated by spaces; the buffer shifting subroutine
SHIFTB simply advances to the first non-blank character after
the first space and copies the buffer onto itself from this
location on.)

For all sub-commands except Off, either the name of a Variable
or an address is required as the first parameter. An input
item starting with a number is considered a (hexadecimal) ad-
dress, otherwise, the parameter is submitted to the routine
FINDAD which was already discussed in chapter 5.3.1.3.2. The
DEBUG routines distinguish between address and Variable input
by setting the Variable type location VARTYP to -1 in the case
of address specification, whereas values from 0 to 3 are re-
turned by FINDAD for Variables.

Indeed, the information otherwise provided by FINDAD in the
Variable type location must be obtained from the operator if
address input was chosen since DEBUG would not know how to
interpret the data at the specified address. (This informa-
tion is not needed for the Display sub-command which outputs
data anyhow in all perceivable notations.) A data format is,
therefore, retrieved from the input buffer or requested from
the operator if an address value was specified with a Continu-
ously or Modify sub-command. (The formats used for numeric
Variables are internally set to "Il1", "I2", and "R", depending
on VARTYP.)

The Continuously and Off sub-commands require a Debug Channel
number, i.e., the number of the output location in the Debug
line (1 to 4) which the command refers to. For both sub-com-

- 253 -

Y 00, T D T UO T T6 TRt o Ty By Tro Bty
RN A R N A U N U T

N

» O D I D AN RO MO DN N
.l.f.t‘:,si?.ltf‘rao.u‘t.._:.t ‘.t,‘,;‘agv. L ,q.‘.v'A‘ll.iai‘.ih"il l'.,n',,l'.\!'.,'f‘,s","h !

5.3 The High-Level Growth Controller Software

~ mands, all necessary information is now available, and the
proper command messages can be sent to the Command Executor.

The Display and Modify sub-commands display the current con-
tents of the specified memory locations; in order to obtain
this datum, four bytes beginning with the given address are
copied into local memory in an approach similar to the one
‘:) used in SETPAR and SETVAR (compare chapter 5.3.1.3.1). The

. contents of the specified location(s) are is immediately
O displayed in several modes if the Display sub-command was
- issued: The four bytes or part of them are interpreted as
\ ASCII string data, as an